CLASSE DE 2TSI PROGRAMME DE COLLE DE MATHEMATIQUES

Colle 07

Du 10 Novembre 2025 au 15 Novembre 2025

1) Revision des probabilités discrètes sur un univers fini

Voir colle 06.

2) Variables aléatoires discrètes X avec $X(\Omega)$ fini

Variable aléatoire réelle avec $X(\Omega)$ fini. Variable aléatoire $\phi(X)$, où ϕ est une fonction réelle.

Définition de la loi de probabilité d'une variable aléatoire X.

Espérance E(X) et variance $V(X) = E((X - E(X))^2)$.

Formule de transfert et formule de Koenig : $V(X) = E(X^2) - E^2(X)$.

Linéarité de l'espérance et formule $V(aX + b) = a^2V(X)$. Loi centrée réduite.

Lois classiques discrétes finies : loi uniforme sur un ensemble fini, loi de Bernoulli, loi binomiale, espérance et variance de ces lois.

3) Couples de Variables aléatoires discrètes (X,Y) avec $X(\Omega)$ et $Y(\Omega)$ finis

Loi du couple, lois marginales.

Indépendance de deux variables aléatoires.

Formule E(aX + y) = aE(X) + E(Y), croissance de l'espérance.

Calcul de E(XY) et formule $V(X+Y)=V(X)+V(Y)+2\operatorname{Cov}(X,Y)$. On a montré que si X et Y sont indépendants alors $\operatorname{Cov}(X,Y)$ et sur un exemple, on a vu que la réciproque est fausse.

4) n-uplet de variables aléatoires discrètes $(X_1,...,X_n)$

Définition de la loi de $(X_1,...,X_n)$, indépendance de n variables aléatoires $X_1,...,X_n$.

Warnung: Éviter les exercices portant sur la détermination de la loi d'une somme de plus de deux variables aléatoires indépendantes $X_1 + ... + X_n$. Le seul cas survolé est la correspondance entre une somme $X_1 + ... + X_n$ de n variables indépendantes de Bernoulli de paramètre p et la loi binomiale $\mathcal{B}(n, p)$. Par ailleurs, la notion de coefficient de corrélation linéaire n'est plus au programme.

5) Inégalité de Bienaymé-Tchebychev

Warnung : L'inégalité de Markov n'est pas à connaître.

Le colleur vérifiera la maîtrise ou l'acquisition de certains des points suivants (en question de cours ou dans un exercice) :

Know-how:

Sur les probabilités :

- 1) Utiliser dans un problème de dénombrement le nombre de bijections ou d'applications.
- 2) Savoir calculer $P(\overline{A})$, $P(A \cap B)$, $P(A \cup B)$ avec des formules.
- 3) Savoir calculer une probabilité en faisant le rapport du nombre de cas favorables sur le nombre de cas possibles.
- 4) Savoir utiliser la formule de Bayes pour calculer $P_B(A)$ connaissant $P_A(B)$.
- 5) Savoir utiliser la formule des probabilités totales en particulier associé au système complet (A, \overline{A}) .
- 6) Savoir calculer $P(A \cap B)$ puis $P(A \cap B \cap C)$ avec la formule des probabilités composées.
- 7) Savoir différencier deux événements incompatibles et indépendants.

Sur les V.A.R.D:

- 1) Savoir trouver une loi de probabilité dans des cas simples.
- 2) Savoir reconnaître une loi classique.
- 3) Connaître l'espérance et la variance des lois classiques (Bernoulli et Binomiale) et retrouver celle
- de la loi uniforme (qui dépend de l'intervalle discret choisi).
- 4) Savoir calculer V(X) directement ou avec Koenig.
- 5) Établir le tableau de la loi d'un couple, trouver les lois marginales et calculer les quantités E(XY)
- et Cov(X, Y) avec Cov(X, Y) = E(XY) E(X)E(Y).
- 6) Savoir détecter quand deux ou n v.a.r sont indépendantes.
- 7) Calculer P(X + Y = k) quand X et Y sont indépendants, où X et Y ont des lois connues.
- 8) Faire le lien entre n v.a.r indépendantes de Bernoulli de paramètre p et la loi binomiale $\mathcal{B}(n,p)$.
- 9) Savoir utiliser Bienaymé-Tchebychev sur des cas simples.