DEVOIR SURVEILLE 02

TSI2. MATHÉMATIQUES

Durée: 4 heures

Samedi 08 Novembre 2025

Pas de calculettes autorisées

Les différents exercices sont indépendants et peuvent être traités dans n'importe quel ordre.

EXERCICE 01

On considère un jeu où une équipe de trois joueurs J_1 , J_2 et J_3 , doit résoudre une énigme. Les joueurs peuvent obtenir de l'aide en interrogeant deux sources d'information issues de l'IA, susceptibles de leur communiquer au maximum quatre indices notés i_1 , i_2 , i_3 et i_4 . Les deux sources d'information sont appelées S_A et S_B . Une seule source peut être interrogée par l'ensemble de l'équipe. Le choix de la source d'information se fait de la façon suivante : on jette successivement deux dés à 6 faces, équilibrés, dont les faces sont numérotés de 1 à 6. On note S la valeur obtenue en ajoutant le nombre de points donné par le lancer des deux dés. Si $S \le 6$, on interroge S_A , sinon on interroge S_B .

1. On note A l'événement : « on interroge S_A » et B l'événement : « on interroge S_B ».

Déterminer les probabilités de chacun de ces événements.

Lorsqu'une source est interrogée, elle peut révéler de 0 à 4 indices parmi les 4 possibles. L'information fournie peut être modélisée comme étant un sous-ensemble de $I = \{i_1, i_2, i_3, i_4\}$. On rappelle que l'ensemble des parties de I est noté $\mathcal{P}(I)$ et que $\mathcal{P}(I)$ contient $2^4 = 16$ éléments. Ainsi l'ensemble vide \emptyset et les sous-ensembles $\{i_1, i_4\}$, $\{i_2, i_3, i_4\}$ représentent trois informations susceptibles d'être communiquées, fournissant respectivement 0, 2 et 3 indices parmi les 4 possibles.

Warning, la source S_A ne contient que 8 des 16 informations possibles et la source S_B contient les 8 autres informations restantes. La répartition entre S_A et S_B est effectuée de façon aléatoire pour chaque partie jouée par l'équipe. Ainsi, si l'information $\{i_1, i_4\}$ est dans la source S_A et que la source choisie par les dés est S_B , l'équipe ne pourra pas accéder à l'information $\{i_1, i_4\}$ au cours de la partie.

À l'issue de la répartition en deux des 16 informations entre S_A et S_B , la source S_A dispose de k informations permettant de connaître l'indice i_4 et les 8-k informations restantes ne donnent pas l'indice i_4 .

La source interrogée révèle à chaque joueur, successivement et de façon indépendante, une information choisie au hasard parmi les 8 dont elle dispose. Il est ainsi possible que la même information soit communiquée à deux ou trois joueurs de l'équipe.

- **2.** Combien y a-t-il d'informations (dans $\mathcal{P}(I)$) contenant l'indice i_4 ?

 On pourra raisonner en distinguant les valeurs possibles du cardinal d'un sous-ensemble de I
- 3. Déterminer, en fonction de k (nombre d'informations de S_A contenant i_4), pour tout $m \in \{1, 2, 3\}$, la probabilité que sachant que S_A a été choisie par les dés, le joueur J_m obtienne de la source S_A une information contenant l'indice i_4 . De même, calculer la probabilité que sachant que S_B a été choisie par les dés, le joueur J_m obtienne de la source S_B une information contenant l'indice i_4 .

On écrira ces probabilités sous la forme d'un rapport et on utilisera le résultat de la question précédente.

4. On note E l'événement : « l'équipe obtient exactement deux informations contenant l'indice i_4 ».

Justifier que la probabilité de E sachant A est : $P_A(E) = 3\left(\frac{k}{8}\right)^2 \cdot \left(\frac{8-k}{8}\right)$.

Calculer de même $P_B(E)$ puis P(E).

5. On note E' l'événement : « chacun des joueurs de l'équipe obtient exactement une information contenant l'indice i_4 ».

Calculer $P_A(E')$, $P_B(E')$ puis P(E') en faisant un développement analogue à la question précédente.

6. L'équipe a obtenu trois informations contenant chacune l'indice i_4 (c'est-à-dire que E' a eu lieu). Quelle est la probabilité que ces informations proviennent de la source S_A ? (On demande donc de calculer $P_{E'}(A)$.)

EXERCICE 02

On considère la matrice $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{pmatrix}$.

1. Démontrer par récurrence que pour tout entier naturel n, on a :

$$A^n = \begin{pmatrix} 2^n & 0 & 3^n - 2^n \\ 0 & 3^n & n \, 3^{n-1} \\ 0 & 0 & 3^n \end{pmatrix}.$$

2. Application à l'étude de deux suites.

On considère les suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ définies par $a_0=2,\,b_0=0$ et pour tout $n\in\mathbb{N}$:

$$a_{n+1} = 2a_n + 3^n$$
 et $b_{n+1} = 3b_n + 3^n$.

On pose pour tout entier naturel $n: X_n = \begin{pmatrix} a_n \\ b_n \\ 3^n \end{pmatrix}$.

- (a) Démontrer que pour tout entier naturel $n, X_{n+1} = AX_n$.
- (b) Établir, pour tout $n \in \mathbb{N}$, $X_n = A^n X_0$.
- (c) En déduire en utilisant la question 1. que pour tout $n \in \mathbb{N}$, on a : $a_n = 2^n + 3^n$ et $b_n = n \cdot 3^{n-1}$.

3. Application au calcul des puissances d'une autre matrice.

On considère les matrices

$$M = \begin{pmatrix} 4 & 0 & -2 \\ -1 & 3 & 1 \\ 1 & 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \text{ et } Q = \begin{pmatrix} -1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

- (a) Calculer PQ. En déduire que P est inversible et donner P^{-1} .
- (b) Vérifier que $PMP^{-1} = A$.
- (c) Démontrer par récurrence que pour tout entier naturel n, on a : $M^n = P^{-1}A^nP$. En déduire que pour tout entier naturel n, on a :

$$M^{n} = \begin{pmatrix} 2 \times 3^{n} - 2^{n} & 0 & 2(2^{n} - 3^{n}) \\ -n \, 3^{n-1} & 3^{n} & n \, 3^{n-1} \\ 3^{n} - 2^{n} & 0 & 2^{n+1} - 3^{n} \end{pmatrix}$$

4. Application au calcul d'une somme.

- (a) Démontrer que pour tout entier naturel k, on a : $2b_k = b_{k+1} b_k 3^k$.
- (b) Pour tout entier naturel n, calculer $\sum_{k=0}^{n} 3^{k}$.
- (c) Démontrer que pour tout entier naturel n, on a : $\sum_{k=0}^{n} (b_{k+1} b_k) = b_{n+1}$.
- (d) Déduire des questions précédentes et de la question $\mathbf{2.(c)}$ que pour tout entier naturel n:

$$\sum_{k=0}^{n} k \, 3^{k-1} = \frac{(n+1) \, 3^n}{2} + \frac{1}{4} - \frac{3^{n+1}}{4}.$$

Indication: on remarquera que $\sum_{k=0}^{n} k \, 3^{k-1} = \sum_{k=0}^{n} b_k$ puis on utilisera **4-a**, **4-b** et **4-c**.

EXERCICE 03

Pour tout $(a,b)\in\mathbb{C}^2$, on note $M(a,b)=\left(\begin{array}{cc} a & -b \\ \overline{b} & \overline{a} \end{array}\right)$, où \overline{z} est le conjugué de z.

Une matrice $M \in \mathcal{M}_2(\mathbb{C})$ de la forme M(a,b) est appelée un quaternion.

On considère les quatre quaternions :

$$E = M(1,0), I = M(i,0), J = M(0,1), K = M(0,i).$$

On veillera à ne pas confondre la matrice I = M(i,0) avec la matrice identité I_2 qui n'est autre que le quaternion E.

Enfin, on note $\mathcal{H} = \{M(a,b), (a,b) \in \mathbb{C}^2\}$, l'ensemble des quaternions.

Partie I

- 1. Donner une base de $\mathcal{M}_2(\mathbb{C})$ en tant qu'espace vectoriel sur \mathbb{C} . Quel est sa dimension? De même, donner une base de $\mathcal{M}_2(\mathbb{C})$ en tant qu'espace vectoriel sur \mathbb{R} . Quelle est sa dimension?
- **2.** Montrer que tout quaternion q = M(a, b) s'écrit de façon unique q = xE + yI + zJ + tK, avec x, y, z, t réels. On exprimera a et b en fonction de x, y, z et t. En déduire que \mathcal{H} est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{C})$ en tant qu'espace vectoriel sur \mathbb{R} . Montrer que (E, I, J, K) est une base de \mathcal{H} et donc dim $\mathcal{H} = 4$.
- **3.** Pour a, b, a', b' des nombres complexes, écrire le produit matriciel M(a, b)M(a', b') sous la forme M(c, d), où on exprimera les complexes c et d en fonction des complexes a, b, a' et b' et de leurs conjugués. Ainsi, on peut dire que l'ensemble \mathcal{H} des quaternions est stable par la multiplication matricielle.
- 4. Calculer les produits deux à deux des matrices E, I, J et K. On présentera les résultats dans un tableau à double entrée. La multiplication dans \mathcal{H} est-elle commutative?
- **5.** Montrer que tout quaternion q = M(a, b) avec $(a, b) \neq (0, 0)$ est inversible.
- **6.** On définit le **commutant de** \mathcal{H} : $\{q \in \mathcal{H}, \forall r \in \mathcal{H}, qr = rq\}$.

Montrer que le commutant de \mathcal{H} est $\{xE, x \in \mathbb{R}\} = \text{Vect}(E)$.

Indication: on posera q = xE + yI + zJ + tK et on appliquera avec r = I, r = J et r = K.

Partie II

Si $q = xE + yI + zJ + tK \in \mathcal{H}$ avec $(x, y, z, t) \in \mathbb{R}^4$, on définit le **quaternion conjugué** de q, noté q^* par la formule :

$$q^* = xE - yI - zJ - tK.$$

Par analogie avec les complexes, la partie réelle de q, notée $\operatorname{Re}(q)$ est xE et la partie imaginaire de q, notée $\operatorname{Im}(q)$ est yI + zJ + tK. Enfin, on pose $N(q) = q.q^*$

- 7. Soit $q \in \mathcal{H}$, montrer que q^* est la transposée de la matrice obtenue en conjuguant tous les coefficients de la matrice q. Indication : on pourra utiliser le développement de $\mathbf{2}$.
- **8.** En déduire que pour tous quaternions q, r, on a : $(qr)^* = r^*q^*$
- **9.** Montrer que pour tout quaternion q = xE + yI + zJ + tK avec $x, y, z, t \in \mathbb{R}$,

$$N(q) = (x^2 + y^2 + z^2 + t^2)E.$$

En déduire l'expression de q^{-1} quand il existe.

10. Montrer que, pour tous quaternions q, r, on a : N(qr) = N(q)N(r).

Indication: on posera q = xE + yI + zJ + tK et r = x'E + y'I + z'J + t'K.