2TSI. DEVOIR LIBRE N°03

CORRECTION

Exercice 01

On considère les matrices suivantes :

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}, C = \begin{pmatrix} 2 & 0 \\ 0 & 0 \end{pmatrix}, D = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}, P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

1-a Montrons que P est inversible et déterminons son inverse.

On applique $\text{Gau}\beta$ -Jordan. On concatène P et I_2 puis on fait $L_2 \leftarrow L_2 - L_1$.

$$\left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \end{array}\right) \Rightarrow \left(\begin{array}{cc|c} 1 & 1 & 1 & 0 \\ 0 & -2 & -1 & 1 \end{array}\right).$$

Puis, $L_2 \leftarrow L_2/(-2)$ et ensuite $L_1 \leftarrow L_1 - L_2$ donne :

$$\left(\begin{array}{cc|cc} 1 & 1 & 1 & 0 \\ 0 & 1 & 1/2 & -1/2 \end{array}\right) \Rightarrow \left(\begin{array}{cc|cc} 1 & 0 & 1/2 & 1/2 \\ 0 & 1 & 1/2 & -1/2 \end{array}\right).$$

On déconcatène et $P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} P$.

1-b
$$A^2 - 2A = O_2$$

1-c On pose
$$U=\left(\begin{array}{c}1\\1\end{array}\right)$$
 et $V=\left(\begin{array}{c}1\\-1\end{array}\right)$. Alors :

$$AU = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} = 2U \text{ et } AV = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} = 0.V.$$

Déduisons que si ϕ est l'endomorphisme associé canoniquement à A, et si l'on pose la base

$$\mathcal{B} = {\vec{u}_1 = (1,1), \vec{u}_2 = (1,-1)}$$

de \mathbb{R}^2 , alors la matrice de ϕ dans la base \mathcal{B} est C.

En effet, $\phi(\vec{u}_1) = 2\vec{u}_1$ et la première colonne de la matrice de ϕ dans la base \mathcal{B} est 2U. Puis, comme $\phi(\vec{u}_2) = \vec{0}$ et la seconde colonne de la matrice de ϕ dans la base \mathcal{B} est la colonne nulle, c'est bien C.

Comme P est la matrice de passage de la base canonique à la base \mathcal{B} , on a bien l'égalité $P^{-1}AP = C$.

2-a Exprimons B en fonction de I_2 et de A.

On a immédiatement : $B = A + I_2$.

Exprimons de même D en fonction de I_2 et de C.

On a immédiatement : $D = C + I_2$.

2-b Déduisons que $P^{-1}BP = D$.

En effet, $P^{-1}BP = P^{-1}(A + I_2)P = P^{-1}AP + P^{-1}I_2P = C + I_2 = D$.

3-a Montrons que, pour tout $n \in \mathbb{N}$, on a : $P^{-1}B^nP = D^n$.

- Initialisation : vrai pour n = 0 et n = 1.
- Hérédité : On suppose vrai au rang n. On a :

q.e.d.

- **3-b** Pour tout $n \in \mathbb{N}$, $D^n = \begin{pmatrix} 3^n & 0 \\ 0 & 1 \end{pmatrix}$.
- **3-c** On en déduit alors que pour tout $n \in \mathbb{N}$,

$$B^{n} = PD^{n}P^{-1} = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 3^{n} & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 3^{n} + 1 & 3^{n} - 1 \\ 3^{n} - 1 & 3^{n} + 1 \end{pmatrix}.$$

4-a Ben et Nuts jouent au Badminton. On suppose que lors de chaque échange, le joueur qui a le service emporte le point avec une probabilité $\frac{2}{3}$ et le perd avec une probabilité $\frac{1}{3}$. On suppose que c'est Ben qui a le service lors du premier échange. Ensuite, selon les règles de ce jeu, celui qui emporte l'échange marque un point et obtient le service pour l'échange suivant.

Pour tout entier naturel $n \ge 1$, on note A_n l'événement « Ben gagne le $n^{\text{ème}}$ échange » et B_n l'événement « Nuts gagne le $n^{\text{ème}}$ échange ». On note a_n et b_n leurs probabilités respectives.

Il est clair que $a_1 = P(A_1) = \frac{2}{3}$.

Puis on utilise:

$$A_{2} = \left(A_{2} \cap A_{1}\right) \cup \left(A_{2} \cap \overline{A_{1}}\right) \Rightarrow P\left(A_{2}\right) = P_{A_{1}}\left(A_{2}\right) P\left(A_{1}\right) + P_{\overline{A_{1}}}\left(A_{2}\right) P\left(\overline{A_{1}}\right).$$

Puis $P_{A_1}(A_2) = \frac{2}{3}$ est la probabilité que Ben gagne le second échange sachant qu'il a le service car il a gagné le premier échange.

Puis $P_{\overline{A_1}}(A_2) = \frac{1}{3}$ est la probabilité que Ben gagne le second échange sachant qu'il n'a pas le service car il a perdu le premier échange. Il reste :

$$P(A_2) = \frac{2}{3}P(A_1) + \frac{1}{3}P(\overline{A_1}) = \frac{2}{3} \times \frac{2}{3} + \frac{1}{3} \times \frac{1}{3} = \frac{5}{9}.$$

4-b On observe que Ben emporte le deuxième échange. Quelle est la probabilité qu'il ait emporté le premier échange?

Il s'agit de calculer $P_{A_2}(A_1)$. On use de la formule :

$$P_{A_2}(A_1) = \frac{P_{A_1}(A_2) P(A_1)}{P(A_2)} = \frac{2}{5}.$$

4-c On utilise la formule des probabilités totales et pour tout entier $n \ge 1$, on a :

$$A_{n+1} = \left(A_{n+1} \cap A_n\right) \cup \left(A_{n+1} \cap \overline{A_n}\right) \Rightarrow P\left(A_{n+1}\right) = P_{A_n}\left(A_{n+1}\right) P\left(A_n\right) + P_{\overline{A_n}}\left(A_{n+1}\right) P\left(\overline{A_n}\right).$$

Puis $P_{A_n}(A_{n+1}) = \frac{2}{3}$ est la probabilité que Ben gagne léchange numéro n+1 sachant qu'il a le service car il a gagné l'échange numéro n.

Puis $P_{\overline{A_n}}(A_{n+1}) = \frac{1}{3}$ est la probabilité que Ben gagne l'échange numéro n+1 sachant qu'il n'a pas le service car il a perdu l'échange numéro n. Il reste :

$$a_{n+1} = P(A_{n+1}) = \frac{2}{3}P(A_n) + \frac{1}{3}P(\overline{A_n}) = \frac{2}{3}a_n + \frac{1}{3}b_n.$$

Exprimons de même b_{n+1} en fonction de a_n et de b_n pour $n \ge 1$.

On utilise (encore) la formule des probabilités totales et pour tout entier $n \ge 1$, on a :

$$B_{n+1} = \left(B_{n+1} \cap B_n\right) \cup \left(B_{n+1} \cap \overline{B_n}\right) \Rightarrow P\left(B_{n+1}\right) = P_{B_n}\left(B_{n+1}\right) P\left(B_n\right) + P_{\overline{B_n}}\left(B_{n+1}\right) P\left(\overline{B_n}\right).$$

Puis $P_{B_n}(B_{n+1}) = \frac{2}{3}$ est la probabilité que Nuts gagne léchange numéro n+1 sachant qu'il a le service car il a gagné l'échange numéro n.

Puis $P_{\overline{B_n}}(B_{n+1}) = \frac{1}{3}$ est la probabilité que Nuts gagne l'échange numéro n+1 sachant qu'il n'a pas le service car il a perdu l'échange numéro n. Il reste :

$$b_{n+1} = P(B_{n+1}) = \frac{2}{3}P(B_n) + \frac{1}{3}P(\overline{B_n}) = \frac{2}{3}b_n + \frac{1}{3}a_n = \frac{1}{3}a_n + \frac{2}{3}b_n.$$

4-d Pour tout $n \in \mathbb{N}^*$, on note X_n la matrice colonne $\begin{pmatrix} a_n \\ b_n \end{pmatrix}$. On a immédiatement :

$$X_{n+1} = \begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} a_n \\ b_n \end{pmatrix} = \frac{1}{3}BX_n.$$

4-e Montrons par récurrence que pour tout entier $n \geqslant 1$, $X_n = \frac{1}{3^{n-1}}B^{n-1}X_1$.

Initialisation : c'est vrai pour n = 1 car $X_1 = I_2 X_1$.

Héredité : Supposons la formule vraie au rang n. Alors :

$$X_{n+1} = \frac{1}{3} \times B \times \frac{1}{3^{n-1}} B^{n-1} X_1 = \frac{1}{3^n} B^n X_1.$$

4-f Déduisons de la question **3-c** que pour tout entier $n \ge 1$, $a_n = \frac{3^n + 1}{2 \times 3^n}$ et déterminons de même une expression de b_n en fonction de n pour tout entier $n \ge 1$.

On peut écrire que :

$$X_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix} = \frac{1}{3^{n-1} \times 2} \begin{pmatrix} 3^{n-1} + 1 & 3^{n-1} - 1 \\ 3^{n-1} - 1 & 3^{n-1} + 1 \end{pmatrix} \begin{pmatrix} a_1 \\ b_1 \end{pmatrix}$$

$$=\frac{1}{3^n\times 2}\left(\begin{array}{cc}3^{n-1}+1&3^{n-1}-1\\3^{n-1}-1&3^{n-1}+1\end{array}\right)\left(\begin{array}{c}2\\1\end{array}\right)=\frac{1}{3^n\times 2}\left(\begin{array}{c}3^n+1\\3^n-1\end{array}\right).$$

On aboutit à:

$$a_n = \frac{3^n + 1}{2 \times 3^n}$$
 et $b_n = \frac{3^n - 1}{2 \times 3^n}$.

5-a Calculons V_2 et W_2 .

On a : $V_1 = \frac{2}{3}V_0 + \frac{1}{3}W_0$ et $W_1 = \frac{1}{3}V_0 + \frac{2}{3}W_0$. Alors :

$$V_2 = \frac{2}{3}V_1 + \frac{1}{3}W_1$$
 et $W_2 = \frac{1}{3}V_1 + \frac{2}{3}W_1$.

Soit:

$$V_2 = \frac{2}{3} \left(\frac{2}{3} V_0 + \frac{1}{3} W_0 \right) + \frac{1}{3} \left(\frac{1}{3} V_0 + \frac{2}{3} W_0 \right).$$

Ou encore :

$$V_2 = \left(\frac{2^2}{3^2} + \frac{1}{3^2}\right)V_0 + \left(\frac{2}{3^2} + \frac{2}{3^2}\right)W_0.$$

La proportion de vodka est donc dans le premier verre rempli :

$$v_2 = \frac{\frac{2}{3^2} + \frac{2}{3^2}}{\frac{2^2}{3^2} + \frac{1}{3^2} \frac{2}{3^2} + \frac{2}{3^2}} = \frac{4}{9}.$$

De même,

$$W_2 = \frac{1}{3} \left(\frac{2}{3} V_0 + \frac{1}{3} W_0 \right) + \frac{2}{3} \left(\frac{1}{3} V_0 + \frac{2}{3} W_0 \right).$$

Ou encore:

$$W_2 = \left(\frac{2}{3^2} + \frac{2}{3^2}\right)V_0 + \left(\frac{2^2}{3^2} + \frac{1}{3^2}\right)W_0.$$

La proportion de vodka est donc dans le deuxième verre rempli :

$$w_2 = \frac{\frac{1}{3^2} + \frac{2^2}{3^2}}{\frac{2^2}{3^2} + \frac{1}{3^2} \frac{2}{3^2} + \frac{2}{3^2}} = \frac{5}{9}.$$

 $\begin{aligned} \textbf{5-b Comme} \left\{ \begin{array}{rcl} V_n & = & \frac{2}{3}V_{n-1} + \frac{1}{3}W_{n-1} \\ W_n & = & \frac{1}{3}V_{n-1} + \frac{2}{3}W_{n-1} \end{array} \right., \text{ la relation entre la matrice colonne} \left(\begin{array}{c} V_n \\ W_n \end{array} \right), \text{ la matrice } B \\ \text{et la matrice colonne} \left(\begin{array}{c} V_{n-1} \\ W_{n-1} \end{array} \right) \text{ est pour } n \geqslant 1, \left(\begin{array}{c} V_n \\ W_n \end{array} \right) = \frac{1}{3}B \left(\begin{array}{c} V_{n-1} \\ W_{n-1} \end{array} \right). \end{aligned}$

 $\mathbf{5-c}$ En utilisant les résultats des questions 3 et 4, déterminons la proportion de vodka dans le premier verre plein. On a :

$$V_n = \frac{1+3^n}{3^n \times 2} V_0 + \frac{3^n - 1}{3^n \times 2} W_0.$$

La proportion est:

$$\frac{\frac{3^n - 1}{3^n \times 2}}{\frac{1 + 3^n}{3^n \times 2} \frac{3^n - 1}{3^n \times 2}} = \frac{3^n - 1}{3^n \times 2}.$$

De même, la proportion de vodka dans le second verre plein à l'issue de la $n^{\text{ème}}$ opération, pour tout entier $n \ge 1$ est :

$$\frac{\frac{3^n+1}{3^n\times 2}}{\frac{1+3^n}{3^n\times 2}\frac{3^n-1}{3^n\times 2}} = \frac{3^n+1}{3^n\times 2}.$$

Quand on fait tendre n vers $+\infty$, on constate que ces deux proportions tendent vers 1/2.

Exercice 02

1) On considère l'application : $\phi : \mathbb{R}[X] \to \mathbb{R}[X], P \mapsto P - P'$.

Pour montrer que ϕ induit sur $\mathbb{R}_3[X]$ un endomorphisme, il faut montrer la linéarité de ϕ et montrer que l'image de $\mathbb{R}_3[X]$ est incluse dans $\mathbb{R}_3[X]$.

 $Linéarité de \phi$

Soient P et Q deux polynômes de $\mathbb{R}[X]$ et $\lambda \in \mathbb{R}$, on a :

$$\phi(P + \lambda Q) = P + \lambda Q - (P + \lambda Q)' = P + \lambda Q - P' - \lambda Q' = P - P' + \lambda (Q - Q').$$

On retrouve $\phi(P) + \lambda \phi(Q)$.

La restriction de ϕ à \hat{A} $\mathbb{R}_3[X]$ est elle un endomorphisme?

Si le degré de P est inférieur ou égal à 3, celui de P-P' aussi. Et donc si $P \in \mathbb{R}_3[X], \phi(P) \in \mathbb{R}_3[X]$.

Par ailleurs, comme $\mathbb{R}_3[X]$ est le sous-espace vectoriel de $\mathbb{R}[X]$ engendré par la base $(1, X, X^2, X^3)$, une autre méthode pour démontrer que ϕ_3 est un endomorphisme, c'est de vérifier que pour tout $k \in [0, 3]$, $\phi(X^k) \in \mathbb{R}_3[X]$. On a :

$$\phi(1) = 1, \ \phi(X) = X - 1.$$

Puis:

$$\forall k \in [2,3], \ \phi(X^k) = X^k - kX^{k-1}.$$

Le polynôme $X^k - kX^{k-1}$ est de degré k pour tout k compris entre 1 et n. Donc $\phi(X^k)$ est un polynôme de degré au plus 3 pour tout entier k compris entre 0 et 3.

On peut conclure : ϕ induit sur $\mathbb{R}_3[X]$ un endomorphisme, noté ϕ_3 .

2) On veut expliciter la matrice de ϕ_3 dans la base canonique de $\mathbb{R}_3[X]$, c'est-à-dire dans la base notée $\beta = (1, X, X^2, X^3)$. On utilise la question précédente. On sait que $\phi(1) = 1$ et que pour tout $k \in [1, 3]$, $\phi(X^k) = X^k - kX^{k-1}$. On en déduit chaque colonne de la matrice $M_{\beta}(\phi_3)$, matrice représentative de ϕ dans la base canonique β de $\mathbb{R}_3[X]$.

$$M_{\beta}(\phi_3) = \left(egin{array}{cccc} 1 & -1 & 0 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 1 \end{array}
ight).$$

3) On veut démontrer que ϕ_3 est un automorphisme de $\mathbb{R}_3[X]$. Donnons plein de méthodes.

Méthode 01

Le calcul de M^{-1} permet de montrer que ϕ_3 est bijectif. Faisons le, étant donné que de toute façon, c'est demandé. On commence par concaténer M et I_4 .

$$\left(\begin{array}{ccc|ccc|ccc|ccc|ccc|ccc|}
1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & -2 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & -3 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{array}\right).$$

Puis on fait successivement :

$$L_3 \leftrightarrow L_3 + 3L_4$$
, $L_2 \leftrightarrow L_2 + 2L_3$, $L_1 \leftrightarrow L_1 + L_2$.

On obtient :
$$\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 2 & 6 \\ 0 & 1 & 0 & 0 & 0 & 1 & 2 & 6 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$
. Et on peut conclure.

$$M^{-1} = \left(\begin{array}{cccc} 1 & 1 & 2 & 6 \\ 0 & 1 & 2 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

Méthode 02

Si vous connaissez les déterminants d'ordre n, on peut remarquer que le déterminant de $M_{\beta}(\phi_3)$ est triangulaire supérieure et est donc égal au produit des ses éléments diagonaux qui sont tous des 1. Ainsi, Det $M_{\beta}(\phi_3) = 1 \neq 0$ et ϕ_3 est un automorphisme de $\mathbb{R}_3[X]$.

$M\'{e}thode$ 03

On peut prouver que le noyau de ϕ_3 est nul. En effet, si tel est le cas, comme ϕ_3 est un endomorphisme en dimension finie, ϕ_3 qui est alors injectif est bijectif (par le théorème du rang).

Soit donc $P \in \text{Ker } \phi_3$, on a : P = P'. Or si P est de degré $k \ge 1$, P' est de degré k-1. Donc si $P \in \text{Ker } \phi_3$, P est constant et comme P' est alors nul, $\text{Ker } \phi_3$ est réduit au polynôme nul.

Méthode 04

On peut montrer que $M_{\beta}(\phi_3)$ est de rang 4, ce qui permet alors de dire que ϕ_3 est surjectif donc bijectif (endomorphisme en dimension finie). Si l'on fait les opérations élémentaires simultanées :

$$C_2 \leftarrow C_2 + C_1, C_3 \leftarrow C_3 + 2C_2, ..., C_4 \leftarrow C_4 + 3C_3,$$

la matrice $M_{\beta}(\phi_3)$ se transforme en I_4 , qui est bien de rang 4.

Méthode 05

On peut expliciter l'inverse de ϕ_3 , ce qui prouvera son existence et par la même occasion que ϕ_3 est bijectif.

Soit $Q = P - P' = \phi_n(P)$. En dérivant, Q' = P' - P'', puis de manière générale,

$$\forall k \in [1, 2], \ Q^{(k)} = P^{(k)} - P^{(k+1)}.$$

Et enfin $Q^{(3)} = P^{(3)}$ car P est un polynôme de $\mathbb{R}_3[X]$, donc de degré au plus 3. En sommant toutes ces égalités, on aboutit à \hat{A} :

$$\sum_{k=0}^{3} Q^{(k)} = P - P' + \dots + P^{(2)} - P^{(2)} + P^{(2)} = P.$$

Tout $Q \in \mathbb{R}_3[X]$ possède donc un antécédent unique qui est : $\sum_{k=0}^3 Q^{(k)}$.

Ainsi, ϕ_3 est un automorphisme de $\mathbb{R}_3[X]$.

- 4) La famille $\left(\frac{X^i}{i!}\right)_{i\in \llbracket 0,3\rrbracket}$ est une base de $\mathbb{R}_3[X]$ car cette famille est formée de 4 polynômes (non nuls) tous de degrés différents dans un espace vectoriel de dimension 4.
- 5) Comme ϕ_3 est un automorphisme de $\mathbb{R}_3[X]$, pour tout $i \in [0,3]$, le polynôme $\frac{X^i}{i!}$, élément de $\mathbb{R}_3[X]$, possède donc un antécédent unique par ϕ_3 que l'on peut appeler s_i . Et $s_i \in \mathbb{R}_3[X]$. Finalement, il existe une unique famille de polynômes $s_0, s_1, ..., s_3$ telle que :

$$\forall i \in [0, 3], \ \phi_n(s_i) = \frac{X^i}{i!}.$$

Par ailleurs, ϕ_3^{-1} est un automorphisme de $\mathbb{R}_3[X]$. On peut conclure que l'image de la base $\left(\frac{X^i}{i!}\right)_{i\in \llbracket 0,3\rrbracket}$ par l'automorphisme ϕ_3^{-1} (qui est la famille $(s_i)_{i\in \llbracket 0,3\rrbracket}$) est encore une base de $\mathbb{R}_3[X]$. On peut conclure :

$$(s_0, s_1, ..., s_3)$$
 est une base de $\mathbb{R}_3[X]$.

6) On note Id l'endomorphisme identité de $\mathbb{R}_3[X]$ et δ l'endomorphisme induit par la dérivation sur le \mathbb{R} -espace vectoriel $\mathbb{R}_3[X]$.

Or $\delta^4=0$ car la dérivée quatrième d'un polynôme de $\mathbb{R}_3[X]$ est nulle. La quantité :

$$(Id - \delta) o (Id + \delta + \dots + \delta^3)$$

vaut, en la développant :

$$Id + \delta + \dots + \delta^3 - \delta - \dots - \delta^3 - \delta^4$$
.

Donc:

$$(Id - \delta) o (Id + \delta + \delta^2 + \delta^3) = Id.$$

Donc $\phi_3^{-1} = Id + \delta + \delta^2 + \delta^3$.

On calcule les matrices M_1 , M_2 et M_3 respectivement de δ , de δ^2 et de δ^3 dans \mathcal{B} .

Et on a bien $M^{-1} = I_4 + M_1 + M_2 + M_3 = \begin{pmatrix} 1 & 1 & 2 & 6 \\ 0 & 1 & 2 & 6 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{pmatrix}$.

7) On remarque que $\phi_3 = Id - \delta$ et donc $\phi_3^{-1} = Id + \delta + ... + \delta^3$. On retrouve l'expression trouvée à la quatrième méthode du développement de la question 3).

$$\forall i \in \llbracket 0, 3 \rrbracket, \, \phi_3^{-1} \left(\frac{X^i}{i!} \right) = \left(Id + \delta + \ldots + \delta^3 \right) \left(\frac{X^i}{i!} \right).$$

Alors, pour i fixé dans [0,3],

$$\phi_3^{-1}\left(\frac{X^i}{i!}\right) = \frac{X^i}{i!} + i\frac{X^{i-1}}{i!} + \dots + i(i-1)\dots(i-(i-1))\frac{X^{i-i}}{i!}.$$

C'est-à-dire :

$$\phi_3^{-1}\left(\frac{X^i}{i!}\right) = \frac{X^i}{i!} + \frac{X^{i-1}}{(i-1)!} + \dots + \frac{X^0}{0!}.$$

On peut conclure:

$$\forall i \in [0, 3], \, \phi_3^{-1} \left(\frac{X^i}{i!} \right) = \sum_{k=0}^i \frac{X^k}{k!}.$$