
1 sur 6
DEVOIR SURVEILLE 03

TSI2. MATHÉMATIQUES

EXERCICE 01

A. Étude d’un premier exemple

Dans cette question, on suppose p = 3 et A = C(−2, 1, 2) =





0 0 −2
1 0 1
0 1 2



 .

Q 1. χA(X) =

∣
∣
∣
∣
∣
∣

X 0 2
−1 X −1
0 −1 X − 2

∣
∣
∣
∣
∣
∣

=
L1←L1+L2+L3

∣
∣
∣
∣
∣
∣

X − 1 X − 1 X − 1
−1 X −1
0 −1 X − 2

∣
∣
∣
∣
∣
∣

= (X−1)

∣
∣
∣
∣
∣
∣

1 1 1
−1 X −1
0 −1 X − 2

∣
∣
∣
∣
∣
∣

=
C2←C2−C1,C3←C3−C1

(X − 1)

∣
∣
∣
∣
∣
∣

1 0 0
−1 X + 1 −1
0 0 X − 2

∣
∣
∣
∣
∣
∣

= (X − 1)(X + 1)(X − 2) ; donc le

polynôme caractéristique de A est : χA(X) = (X + 1)(X − 1)(X − 2)

Q 2. Le polynôme caractéristique de A est scindé à racines simples sur R, donc, par théorème,

A est diagonalisable dans M3(R) avec D = diag
(
− 1, 1, 2

)

Déterminons les sous-espaces propres de A et donc une base de vecteurs propres :

E−1 = Ker
(
A+ I3

)
= Ker





−1 0 2
−1 −1 −1
0 −1 −3



 = Ker





−1 0 2
0 −1 −3
0 −1 −3



 = Vect (2−31)

E1 = Ker
(
A− I3

)
= Ker





1 0 2
−1 1 −1
0 −1 −1



 = Ker





1 0 2
0 1 1
0 1 1



 = Vect (−2−11)

E2 = Ker
(
A− 2I3

)
= Ker





2 0 2
−1 2 −1
0 −1 0



 = Ker





1 0 1
0 4 0
0 −1 0



 = Vect (−101)

On aura donc A = PDP−1 = P diag
(
− 1, 1, 2

)
P−1 ; avec P =





2 −2 −1
−3 −1 0
1 1 1





B. Étude d’un second exemple

Dans cette question, on suppose p = 3 et B = C(1,−3, 3) =





0 0 1
1 0 −3
0 1 3



 .

Q 3. χB(X) =

∣
∣
∣
∣
∣
∣

X 0 −1
−1 X 3
0 −1 X − 3

∣
∣
∣
∣
∣
∣

; un calcul similaire à Q1. donne χB(X) = (X − 1)3

E1 = Ker
(
A− I3

)
= Ker





1 0 −1
−1 1 3
0 −1 −2



 = Ker





1 0 −1
0 1 2
0 1 2



 = Vect





1
−2
1





Q 4. Le polynôme caractéristique de B est scindé sur R, donc B est trigonalisable dans M3(R)
B possède une seule valeur propre de multiplicité 3, or le sous-espace propre associé est de dimension

1 < 3, donc B n’est par diagonalisable dans M3(R)

Q 5. Bv2 =





0 0 1
1 0 −3
0 1 3









x
y
0



 =





0
x
y



 et v1 + v2 =





1 + x
−2 + y

1



 donc Bv2 = v1 + v2 v2 =





−1
1
0





Q 6. Bv3 =





0 0 1
1 0 −3
0 1 3









z
t
0



 =





0
z
t



 et v2 + v3 =





−1 + z
1 + t
0



 donc Bv3 = v2 + v3 v3 =





1
0
0





Q 7. Tout d’abord la famille
(
v1, v2, v3

)
est bien une base de R

3 car les vecteurs sont échelonnés.
Ensuite, d’après Q3. Q5. et Q6. ; Bv1 = v1, Bv2 = v1 + v2 et Bv3 = v2 + v3 ;
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Donc dans cette base la matrice semblable à B est T =





1 1 0
0 1 1
0 0 1



.

D’après la formule de changement de base : B = RTR−1 avec R la matrice de changement de base,

soit : R =





1 −1 1
−2 1 0
1 0 0



 = Mat
(
v1, v2, v3

)

C. On revient au cas général, où p ∈ N
⋆ On pose C = C(a1, ..., ap).

Q 8. Montrons par récurrence sur p que χC(X) = χp(X) = Xp − apX
p−1 − · · · − a2X − a1 ;

⋄ initialisation : C(a1) =
(
a1
)
et χC = χ1 = X − a1 ; la propriété est initialisée ;

⋄ hérédité : supposons la propriété vraie pour un entier p ;

χp+1(X) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X 0 · · · 0 −a1
−1 X 0 · · · −a2

0
. . .

. . . 0
...

...
. . .

. . . X −ap
0 · · · 0 −1 X − ap+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
Cp+1←Cp+Cp+1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X 0 · · · 0 −a1
−1 X 0 · · · −a2

0
. . .

. . . 0
...

...
. . .

. . . X X − ap
0 · · · 0 −1 X − ap+1 − 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

en développant par rapport à la dernière ligne, il vient :

χp+1(X) = −(−1)2(p+1)−1

︸ ︷︷ ︸

=1

∣
∣
∣
∣
∣
∣
∣
∣
∣

X 0 · · · −a1
−1 X · · · −a2
...

. . .
. . .

...
0 · · · −1 X − ap

∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

χp(X)

+
(
X − ap+1 − 1

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

X 0 · · · 0

−1 X
. . .

...
...

. . .
. . . 0

0 · · · −1 X

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸

triangulaire

par hypothèse de récurrence, on obtient :
χp+1(X) = Xp − apX

p−1 − · · · − a2X − a1 +Xp
(
X − ap+1 − 1

)

= Xp − apX
p−1 − · · · − a2X − a1 +Xp+1 − ap+1X

p −Xp

= Xp+1 − ap+1X
p − · · · − a2X − a1 et la propriété est héréditaire ;

⋄ conclusion : on a montré par récurrence que χC(X) = Xp − apX
p−1 − · · · − a2X − a1

Q 9. C − λIp =











−λ 0 · · · 0 a1
1 −λ 0 · · · a2

0
. . .

. . . 0
...

...
. . .

. . . −λ ap−1
0 · · · 0 1 ap − λ











∼











1 −λ 0 · · · a2

0
. . .

. . . 0
...

...
. . .

. . . −λ ap−1
0 · · · 0 1 ap − λ
−λ 0 · · · 0 a1











;

Cette matrice possède au moins p− 1 pivots donc est de rang au moins p− 1 ; ainsi
(
C − λIp

)
> p− 1

Un sous-espace propre de C peut être défini par Ker
(
C − λIp

)
, où λ est une valeur propre de C.

On applique le théorème du rang à la matrice C − λIp : dimR
p = dim

(
C − λIp

)
+ dimKer

(
C − λIp

)
; et

donc dimKer
(
C − λIp

)
= p−

(
C − λIp

)
; avec

(
C − λIp

)
≥ p− 1 ; on obtient dimKer

(
C − λIp

)
6 1 ;

Or on sait que si λ est valeur propre de C alors dimKer
(
C−λIp

)
> 1 ; on a donc dimKer

(
C − λIp

)
= 1

Q 10.

• Si le polynôme caractéristique de C est scindé à racines simples, alors C est diagonalisable, par
théorème.

• Réciproquement, supposons que C est diagonalisable ; le polynôme est scindé et la dimension de
chaque sous-espace propre est égale à la multiplicité des valeurs propres. Or on a montré à la
question précédente que chaque sous-espace propre est de dimension 1, donc chaque valeur propre
est de multiplicité 1, c’est-à-dire que toutes les racines du polynôme caractéristique sont simples.

En conclusion, on a montré

C est diagonalisable ⇐⇒ son polynôme caractéristique est scindé à racines simples
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Q 11. Soit P unitaire de degré p, il existe un unique p−uplet
(
λ0, λ1, ..., λp−1

)
tel que

P = Xp + λp−1X
p−1 + · · ·+ λ0

P peut s’écrire P = Xp − (−λp−1)X
p−1 − · · · − (−λ1)X − (−λ0) ;

P est donc le polynôme caractéristique de C
(
− λ0,−λ1, ...,−λp−1

)

Q 12.

• Si Q est le polynôme caractéristique d’une matrice, alors Q est unitaire.
• Réciproquement, soit Q un polynôme unitaire ; alors, d’après la question précédente, Q est le
polynôme caractéristique d’une matrice C.

En conclusion, on a montré que : Q est le polynôme caractéristique d’une matrice ⇐⇒ Q est unitaire

EXERCICE 02

Extrait du sujet CCINP filière TPC 2019 : valeur de I =

∫ +∞

0

exp
(
−t2

)
dt.

Q 13. La fonction f : x 7→ exp(−x2) est continue et positive sur [1,+∞[. Par ailleurs, en +∞,

f(x) = o(1/x2) (croissance comparée). Or

∫ +∞

1

1

x2
dx converge (Riemann).

Donc par comparaison

∫ +∞

1

exp(−x2)dx converge.

L’intégrale

∫ 1

0

exp(−x2)dx converge car x 7→ exp(−x2) est continue sur le segment [0, 1].

Puisque

∫ +∞

1

exp(−x2)dx converge, il suite que I =

∫ +∞

0

exp(−x2)dx converge.

Q 14. Il suffit d’étudier la fonction h : 7→ ln(1 + x) − x sur ]− 1,+∞[.

On a : h′(x) =
1

1 + x
− 1 =

−x

1 + x
. La fonction h est croissante sur ]− 1, 0] et à valeurs dans ]−∞, 0] et

décroissante sur [0,+∞[ à valeurs dans ]−∞, 0]. Ainsi h est à valeurs négatives.

Q 15. Soit n ∈ N
∗ et t ∈ [0,

√
n[, alors − t2

n ∈]− 1,+∞[ donc en appliquant l’inégalité précédente :

ln

(

1− t2

n

)

6 − t2

n

On compose par exp (croissante) :

(

1− t2

n

)

6 exp

(

− t2

n

)

. Puis on passe à la puissance n (croissante

sur [0,+∞[) :
(

1− t2

n

)n

≤ exp
(
−t2

)

L’inégalité est aussi vraie pour t =
√
n.

Soit n ∈ N
∗ et t ∈ [0,

√
n], alors

exp
(
−t2

)
6

(

1 +
t2

n

)−n

⇐⇒
(

1 +
t2

n

)n

6 exp
(
t2
)

Cette dernière inégalité étant vraie en utilisant le même raisonnement qu’à la question précédente.

Q 16. Soit n ∈ N
∗. La fonction t 7→

(

1 +
t2

n

)−n

est continue sur [0,+∞[. Par ailleurs, pour tout t > 0,

(

1 +
t2

n

)−n

=
1

(
1 + t2

n

)n ≤ 1
(
1 + t2

n

) .
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De plus, en +∞ :
1

(
1 + t2

n

) ∼ n

t2
. Or t 7→ n

t2 est intégrable en +∞ (Riemann) donc par équivalence,

∫ +∞

0

1
(
1 + t2

n

)dt converge, puis par comparaison, vn converge.

Q 17. Il suffit d’utiliser la première inégalité de la question Q 15 et la croissance de l’intégrale, en
intégrant sur [0,

√
n].

un =

∫ √n

0

(

1− t2

n

)n

dt 6 In =

∫ √n

0

e−t
2

dt.

Q 18. Il suffit d’utiliser la deuxième inégalité de la question Q 15 et la croissance de l’intégrale, en

intégrant sur [0,
√
n]. La fonction t 7→

(

1 +
t2

n

)−n

étant positive, on a

∫ √n

0

(

1 +
t2

n

)−n

dt 6

∫ +∞

0

(

1 +
t2

n

)−n

dt = vn.

Il vient donc bien : ∀n ∈ N
∗, un 6 In 6 vn

Q 19. On pose t =
√
n sin(x), alors dt =

√
n cos(x)dx et t = 0 ⇔ x = 0, t =

√
n ⇔ x = π/2. Donc :

un =

∫ √n

0

(

1− t2

n

)n

dt =

∫ π/2

0

(
1− sin2(x)

)n √
n cos(x)dx =

√
n

∫ π/2

0

cos2n+1(x)dx

Finalement, un =
√
na2n+1.

Q 20. On pose t =
√
n tan(x), alors dt =

√
n 1

cos2(x)dx et t = 0 ⇔ x = 0, t = +∞ ⇔ x = π/2. Donc :

vn =

∫ +∞

0

(

1 +
t2

−n

)n

dt =

∫ π/2

0

(
1

cos2(x)

)−n √
n

1

cos2(x)
dx =

√
n

∫ π/2

0

cos2n−2(x)dx

Finalement, vn =
√
na2n−2.

Q 21. A l’aide du résultat admis et de la question Q 19, un ∼
√
n

√
π

2(2n+ 1)
∼

√
π

2
De même,

vn ∼
√
π

2
. En particulier,

un −→
√
π

2
et vn −→

√
π

2
.

Il suit donc du théorème d’encadrement et de la question Q 18 que : In −→
√
π

2
. Par ailleurs, puisque I

converge, on a aussi In −→ I. L’unicité de la limite entrâıne alors que :

I =

√
π

2
.

EXERCICE 03

Extrait du sujet CCINP filière TPC 2023 : étude de l’intégrabilité de x 7→ sin(πx)

xa
, où a > 0.

Soit a > 0, on considère les fonctions fa définies sur R⋆
+ par : ∀x ∈ R

⋆
+, fa(x) =

sin(πx)

xa
.

On note Ia et Ja les intégrales généralisées Ia =

∫ 1

0

fa(t) dt et Ja =

∫ +∞

1

fa(t) dt.

Q 22. Si a 6 0, la fonction fa est continue sur [0, 1] donc Ia converge.

Si 0 < a < 2, fa est continue sur ]0, 1] et fa ∼
0

πx

xa
= π

xa−1 .
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De plus, a− 1 < 1 donc l’intégrale

∫ 1

0

1

xa−1
dx converge (intégrale de Riemann), donc par équivalent des

intégrales de fonctions positives Ia converge.

Si a ≥ 2 alors a− 1 > 1, donc l’intégrale

∫ 1

0

1

xa−1
dx diverge (intégrale de Riemann), puis par équivalent

des intégrales de fonctions positives Ia diverge.

Q 23. Pour tout t > 1, |fa(t)| 6 1
ta .

Si a > 1, l’intégrale

∫ +∞

1

1

ta
dt converge (intégrale de Riemann), donc par comparaison des intégrales des

fonctions positives

∫ +∞

1

|fa(t)|dt converge i.e. Ja converge absolument.

Q 24. Soit X > 1. On pose u(t) =
1

ta
et v′(t) = sin(πt). Par intégration par parties :

∫ X

1

fa(t)dt =

[

−cos(πt)

πta

]X

1

−
∫ X

1

−a

ta+1

− cos(πt)

π
dt =

−1

π
− cos(πX)

πXa
− a

π

∫ X

1

cos(πt)

ta+1
dt.

Pour les mêmes raisons qu’à la question Q 23, l’intégrale

∫ +∞

1

cos(πt)

ta+1
dt converge absolument, en par-

ticulier, elle converge i.e. X 7→
∫ X

1

cos(πt)

ta+1
dt admet une limite finie quand X → +∞. Par ailleurs,

∣
∣
∣
∣

cos(πX)

πXa

∣
∣
∣
∣
6

1

πXa
−−−−−→
X→+∞

0.

Finalement,
∫ X

1

fa(t)dt −−−−−→
X→+∞

− 1

π
− a

π

∫ +∞

1

cos(πt)

ta+1
dt

La fonction X 7→
∫ X

1

fa(t)dt admet une limite finie quand X → +∞ et ainsi

Ja converge lorsque a ∈]0, 1].
Q 25. D’après ce qui précède, Ja converge pour tout a > 0 (CVA pour a > 1 et CV pour a ∈]0, 1])

et Ia converge ssi a < 2. En conclusion,

∫ +∞

0

fa(t)dt converge si 0 < a < 2 (somme de deux intégrales

convergentes) et diverge si a ≥ 2 (somme d’une intégrale convergente et d’une intégrale divergente). En

résumé,

∫ +∞

0

fa(t)dt converge si, et seulement si 0 < a < 2.

EXERCICE 04

Extrait du sujet CCINP filière TPC 2023 : étude de la convergence et calcul de la somme

d’une série alternée.

Soit n ∈ N, on pose : vn =

∫ 1

0

sin(πx)

x+ n
dx et un = (−1)nvn.

Q 26. u0 = I1 et 1 < 2 donc u0 existe.

Celui qui n’a pas fait l’exercice 03 peut dire que u0 =

∫ 1

0

sin(πx)

x
dx et la fonction x 7→ sin(πx)

x
est

continue sur ]0, 1], à valeurs positives et équivalente à π quand x tend vers 0, qui est une valeur finie.
Ainsi u0 est convergente.

Q 27. Pour tout x ∈ [0, 1],
1

x+ n+ 1
6

1

x+ n
puis comme sin(πx) > 0, il vient :

sin(πx)

x+ n+ 1
6

sin(πx)

x+ n
.

Par croissance de l’intégrale, il suit que vn+1 6 vn donc (vn) est décroissante.
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De plus, pour tout n > 1 :

|vn| 6
∫ 1

0

1

x+ n
dx 6

∫ 1

0

1

n
dx =

1

n
−−−−−→
n→+∞

0

D’après le théorème d’encadrement, on en déduit que (vn) converge vers 0.

Q 28. D’après la question précédente, (vn) est décroissante et converge vers 0 et pour tout n ∈ N,

un = (−1)nvn. D’après le théorème spécial des séries alternées, il vient que
∑

un converge.

Q 29. Soit N ∈ N : SN − l =
N∑

n=0

un −
+∞∑

n=0

un = −
+∞∑

n=N+1

un.

Il faut utiliser le critère de majoration du reste des séries alternées.

|SN − l| 6 |uN+1| =
∫ 1

0

sin(πx)

x+N + 1
dx 6

∫ 1

0

1

x+N + 1
dx

= [ln(x+N + 1)]
1
0 = ln

(
N + 2

N + 1

)

= ln

(

1 +
1

N + 1

)

On peut développer une méthode pour calculer une valeur approchée de l à epsilon près en supposant
connues les valeurs de la suite (un). (On ne demande pas de résultat numérique.)

En effet, si ln
(

1 + 1
N+1

)

< ǫ ⇔ 1 + 1
N+1 < eǫ ⇔ N + 1 >

1

eǫ − 1
.

Il suffit de prendre N = ⌊ 1

eǫ − 1
⌋ et alors SN est une valeur approchée de l à ǫ près.

Q 30. On pose t = x+ n pour obtenir :

un = (−1)n
∫ n+1

n

sin(π(t− n))

t
dt

Puis : sin(π(t− n)) = sin(πt− nπ) = sin(πt) cos(nπ)− cos(πt) sin(nπ) = sin(πt) cos(nπ) = sin(πt)(−1)n.
Donc on obtient bien :

un =

∫ n+1

n

sin(πt)

t
dt

Q 31. On a, par la relation de Chasles :

l =

+∞∑

n=0

un =

+∞∑

n=0

∫ n+1

n

sin(πt)

t
dt =

∫ +∞

0

sin(πt)

t
dt

Kulture : un étudiant un peu médium verrait que

∫ +∞

0

sin(πt)

t
dt =

π

2
.


