DEVOIR SURVEILLE 03 —

TSI2. MATHEMATIQUES
| EXERCICE 01 |

A. Etude d’un premier exemple

0 0 -2
Dans cette question, on suppose p=3et A=C(-2,1,2)=| 1 0 1
0 1
X 0 2 X-1 X-1 X-1 1 1 1
Ql. \u(X)=| -1 X -1 = -1 X -1 |=(xx-1D|-1 X -1
0 —1 X—2 |Rchthtla)l -1 X-2 0 -1 X-2
1 0 0
X-1| -1 X+1 -1 = (X = I)(X + 1)(X — 2); donc le

C2¢-02-C1,Ca+C3—Cy 0 0 X-—29

polynome caractéristique de A est : [x4(X) = (X + 1)(X — 1)(X — 2)|
Q 2. Le polynoéme caractéristique de A est scindé a racines simples sur R, donc, par théoreme,
|A est diagonalisable dans M3(R) avec D = diag( — 1,1, 2)|
Déterminons les sous-espaces propres de A et donc une base de vecteurs propres :

-1 0 2 -1 0 2
E1=Ker(A+1I3)=Ker [-1 —1 —1|=Ker|[ 0 -1 —3| =Vect (2-31)
0 -1 -3 0 -1 -3
1 0 2 1 0 2
Er=Ker(A—I)=Ker [-1 1 —1|=Ker [0 1 1| =Vect(-2-11)
0 -1 71 0 1 1
2 0 1
Ex=Ker(A—2I3) =Ker [ -1 2 —1 = Ker ( 0 | = Vect (—101)
0 -1 -1 0
2 -2 -1
On aura donc A = PDP~ 1 =P diag( 1,1 2) P ;avec|P=|-3 -1 0
1 1 1
B. Etude d’un second exemple
0 0 1
Dans cette question, on suppose p=3et B=C(1,-3,3)=| 1 0 -3
01 3
X 0 -1
Q3. xg(X)=| -1 X 3 ; un calcul similaire & Q1. donne |XB(X) =(X— 1)3|
0 -1 X-3
1 0 -1 10 -1 1
&1 = Ker (A Ig) =Ker |-1 1 3 ] =Ker|0 1 2 | = |Vect -2
0o -1 -2 01 2 1

Q 4. Le polynoéme caractéristique de B est scindé sur R, donc |B est trigonalisable dans Mg(R)|
B possede une seule valeur propre de multiplicité 3, or le sous-espace propre associé est de dimension
1 < 3, donc |B n’est par diagonalisable dans ./\/lg(]R)|

0 0 1 T 0 14z -1
Q5. Bvnon={(1 0 -3 yl=[z]etvi+va=|-2+y]| donc Buvo =v1+v2 |vag=1] 1
0 1 3 0 Y 1 0
0 0 1 z 0 14z 1
Q6. Bus={(1 0 -3 t] =1z etv+uv= 1+ donc Bvg =v2 +v3 |v3= 1|0
0 1 3 0 t 0 0

Q 7. Tout d’abord la famille (vl, V9, Ug) est bien une base de R3 car les vecteurs sont échelonnés.
Ensuite, d’apres Q3. Q5. et Q6.; Bvy = vy, Bvs = v1 + v2 et Bvg = vg + v3;
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1 1 0
Donc dans cette base la matrice semblable a Best T= |0 1 1
0 1

0
D’apres la formule de changement de base : B = RTR™! avec R la matrice de changement de base,
1 -1 1
soit:|[R=1-2 1 0] = Mat(’Ul,’Ug,’Ug)
1 0 0

C. On revient au cas général, o1 p € N* On pose C' = C(ay, ..., ap).

Q 8. Montrons par récurrence sur p que xc(X) = xp(X) = XP —aqp XP71 — -+ — a0 X —ay ;
o initialisation : C(a1) = (al) et xo = x1 = X — a1 ; la propriété est initialisée;
o hérédité : supposons la propriété vraie pour un entier p;

X 0 -+ 0 —ay X 0 -~ 0 —ay
-1 X 0 - —as -1 X 0 .- —as
X)=| 0 . . 0 : = 0 . .0 :
Xp+1(X) . Cpi1-CotCpiy -
: . . X —ap : ool X X —ay
0 -+ 0 -1 X-—app 0 -+ 0 -1 X-—-apy1—1
en développant par rapport a la derniere ligne, il vient :
X 0 .. —a X 0 --- 0
—1 X N —as 1 X
Xp1(X) = —(=1)*F*0=1 : + (X —apy1 —1)
~ : : : . .0
=1 0 e -1 X — ap 0 . —1 X
xp(X) triangulaire
par hypothese de récurrence, on obtient :
Xp1(X) = XP —ap XP~t — oo — X — a1 + XP(X —apgp1 — 1)
=XP —ap,XP7l— - —asX —ay + XPT! —q, 1 XP — XP
= XPH — a1 XP — -+ — a2 X — ay et la propriété est héréditaire;
o conclusion : on a montré par récurrence que |XC(X) = XP — apo*1 — e —aX —aq
-2 0 - 0 ay 1 =X 0 .- as
1 =X 0 . . . .
a2 0 . .0
9. C—- )\, = 0 0 ~
Q P . . . - ap—1 ’
: . = ap— o --- 0 1 ap—2A
o .- 0 1 ap—A - 0 .- 0 aq

Cette matrice possede au moins p — 1 pivots donc est de rang au moins p — 1; ainsi |(C — )\Ip) >p— 1|

Un sous-espace propre de C peut étre défini par Ker (C’ — )\Ip), ou A\ est une valeur propre de C.

On applique le théoreme du rang & la matrice C' — Al : dimR? = dim (C' — AL,) 4+ dimKer (C' — AI,) ; et

donc dimKer (C' — A\I,) = p— (C — AL,); avec (C — Al,) > p—1; on obtient dim Ker (C' — AI,) < 1;
I

Or on sait que si A est valeur propre de C' alors dim Ker (C — )\Ip) > 1; on adonc |dim Ker (C’ - A p) = 1|

Q 10.

e Si le polynome caractéristique de C' est scindé a racines simples, alors C' est diagonalisable, par
théoreme.

e Réciproquement, supposons que C est diagonalisable; le polynéme est scindé et la dimension de
chaque sous-espace propre est égale a la multiplicité des valeurs propres. Or on a montré a la
question précédente que chaque sous-espace propre est de dimension 1, donc chaque valeur propre
est de multiplicité 1, c’est-a-dire que toutes les racines du polynéme caractéristique sont simples.

En conclusion, on a montré

[C est diagonalisable <=> son polynome caractéristique est scindé & racines simples|
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Q 11. Soit P unitaire de degré p, il existe un unique p—uplet ()\0, Alyoeny )\p,l) tel que
P:XP+AP,1XP*1+-~-+>\O

P peut s’écrire P = XP — (=Xp—1)XP7L— oo — (=) X — (=Xo);

|P est donc le polynéme caractéristique de C( — A0, = AL, ey —)\p_l)l

Q 12.

e Si () est le polynome caractéristique d’une matrice, alors () est unitaire.
e Réciproquement, soit ) un polyndéme unitaire; alors, d’aprés la question précédente, @) est le
polynéme caractéristique d’une matrice C.
En conclusion, on a montré que : [Q) est le polynome caractéristique d’une matrice <= () est unitaire|

| EXERCICE 02 |

+oo
Extrait du sujet CCINP filiere TPC 2019 : valeur de I = / exp (—t2) dt.
0

Q 13. La fonction f : x ~ exp(—2z?) est continue et positive sur [1,+oo[. Par ailleurs, en +oo,

—+o0
f(x) = o(1/2?) (croissance comparée). Or / — dz converge (Riemann).
) O/ ) .z

—+o0
: 2
Donc par comparalison / exp(—x )dl’ converge.
1

1
L’intégrale / exp(—2?)dx converge car x +— exp(—z?) est continue sur le segment [0, 1].
0

—+oo —+oo
Puisque / exp(—2?)dz converge, il suite que I = / exp(—2?)dz converge.
1 0

Q 14. 1l suffit d’étudier la fonction h :— In(1+ z) — z sur | — 1, +o0[.

1 —

Ona:h/(z)= 112" 1= % La fonction h est croissante sur | — 1, 0] et & valeurs dans | — 00, 0] et
x x

décroissante sur [0, +oo[ & valeurs dans | — 0o, 0]. Ainsi & est & valeurs négatives.

Q 15. Soit n € N* et t € [0,+/n], alors —% €] — 1, +oo[ donc en appliquant I'inégalité précédente :

2 2
On compose par exp (croissante) : (1 — —) < exp (——). Puis on passe & la puissance n (croissante
n n

(1 — %)n <exp (—t?)

sur [0, +o0f) :

L’inégalité est aussi vraie pour ¢ = 1/n.
Soit n € N* et ¢ € [0,+/n], alors

2 2\ 2\" 2
exp(—t)< 1+Z <= 1+Z <exp(t)

Cette derniere inégalité étant vraie en utilisant le méme raisonnement qu’a la question précédente.
2\ "

Q 16. Soit n € N*. La fonction t — (1 + —) est continue sur [0, 4+o00[. Par ailleurs, pour tout ¢ > 0,
n

<1+ﬁ>n L 1
w1+ 8)" T R
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1 n
De plus, en 400 : —. Or ¢t = 5 est intégrable en +oo (Riemann) donc par équivalence,

) P
+oo

/ Wdt converge, puis par comparaison, v, converge.

o 2 -

n
Q 17. 1l suffit d’utiliser la premiere inégalité de la question Q 15 et la croissance de l'intégrale, en

intégrant sur [0, \/n].
VR 2\" Vi
un:/ (1—) dtg[n:/ e dt.
0 n 0

Q 18. 1l suffit d’utiliser la deuxieme inégalité de la question Q 15 et la croissance de l'intégrale, en

2 —n
intégrant sur [0, /n]. La fonction ¢ — (1 + —) étant positive, on a
n

\/ﬁ t2 —n +o00 t2 —n
/ (1+—) dtg/ (1+—) dt = v,.
0 n 0 n

Il vient donc bien : Vn € N*, u,, < I, < v,
Q 19. On pose t = \/nsin(z), alors dt = \/ncos(z)dx et t =0< 2 =0,t=+/n < 2 =7/2. Donc :

NG £2\" /2 n /2
tin = / (1_) dt = / (1 —sin*(@))" Vicos(x)dr = v/ / cos®™+ () dx
0 n 0 0

Finalement, u,, = v/nas,11.

Q 20. On pose t = y/ntan(z), alors dt:\/ﬁcosz( ydr et t =0 2 =0, =400 ¢ z=m/2. Donc:

e [ S e [ () Vi v [

Finalement, v,, = \/nas,_a.

Q 21. A laide du résultat admis et de la question Q 19, u, ~ /n De méme,

T VT
2(2n + 1) 2

™
Un ~ 5 En particulier,

Uy — \/—E et v, — \/—E
2 2
Il suit donc du théoréeme d’encadrement et de la question Q 18 que : I,, — 5 Par ailleurs, puisque 1

converge, on a aussi I,, — I. L’unicité de la limite entraine alors que :

| EXERCICE 03 |

Extrait du sujet CCINP filiére TPC 2023 : étude de Uintégrabilité de z — U ow a > 0.
:Ca

sin(mx) .

Soit a > 0, on considere les fonctions f, définies sur R par : Vo € RY, fo(x) = o

1 400
On note I, et J, les intégrales généralisées I, = / fa(t)dt et J, = / fa(t)dt.
0 1

Q 22. Sia <0, la fonction f, est continue sur [0, 1] donc I,, converge.

T
Si0<a<2, f,estcontinue sur ]0,1] et fa ~— =X

T
:L.a
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1
De plus, a — 1 < 1 donc l'intégrale / dx converge (intégrale de Riemann), donc par équivalent des
0

zafl
intégrales de fonctions positives I, converge.

1
Sia > 2alorsa—1 2> 1, donc l'intégrale / dx diverge (intégrale de Riemann), puis par équivalent

ra—l
des intégrales de fonctions positives I, diverge.

Q 23. Pour tout ¢t > 1, | f,(t)| < tia

—+o0
Sia > 1, 'intégrale / t—adt converge (intégrale de Riemann), donc par comparaison des intégrales des
1

+oo
fonctions positives / | fa(t)|dt converge i.e. J, converge absolument.
1

1
Q 24. Soit X > 1. On pose u(t) = — et v/(t) = sin(nt). Par intégration par parties :

tll
/Xf (t)dt = cos(mt) ¥ /X —a —cos(ﬂ't)dt _—1 cos(rX) a /X cos(ﬂ't)dt
;e N e ] ,  totl T o rXa T, tetl T
. 20 cos(nt)
Pour les mémes raisons qu’a la question Q 23, I'intégrale / Jat T dt converge absolument, en par-
1

X
cos(mt
ticulier, elle converge i.e. X — / tas_ﬂ; )dt admet une limite finie quand X — +o0. Par ailleurs,
1
cos(mX) o 1
TXa X% X—+oco
Finalement,
X +oo
1 cos(mt
Fal)lt ——— —= — g/ (7t) 4
1 X—=+o0o T T J; o+l
b'e
La fonction X — fa(t)dt admet une limite finie quand X — +o00 et ainsi

1
J, converge lorsque a €]0, 1].

Q 25. D’apres ce qui précede, J, converge pour tout a > 0 (CVA pour a > 1 et CV pour a €]0,1])
—+o0
et I, converge ssi a < 2. En conclusion, fa(t)dt converge si 0 < a < 2 (somme de deux intégrales
0
convergentes) et diverge si @ > 2 (somme d’une intégrale convergente et d’une intégrale divergente). En

—+o0
résumé, / fa(t)dt converge si, et seulement si 0 < a < 2.
0

| EXERCICE 04 |

Extrait du sujet CCINP filiere TPC 2023 : étude de la convergence et calcul de la somme
d’une série alternée.

1 .
sin(mx

Soit n € N, on pose : v, = / gdm et u, = (—1)"vp.
0

r+n
Q 26. ug = 1I; et 1 < 2 donc ug existe.

(mz)

1 . .
sin sin(mx
Celui qui n’a pas fait I’exercice 03 peut dire que ug = / ———=dx et la fonction x — g
0

est
T T

continue sur ]0, 1], & valeurs positives et équivalente & 7 quand x tend vers 0, qui est une valeur finie.
Ainsi ug est convergente.

1 1 . .
Q 27. Pour tout z € [0, 1], < puis comme sin(rx) > 0, il vient : sin(mz) < s1n(7rz).
z+n+1 " x+n r+n+1 T+n

Par croissance de Uintégrale, il suit que v,1+1 < v, donc (vy,) est décroissante.
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De plus, pour tout n > 1 :

1 1
|vn|§/ ! dxg/ldz:l——%()
0o T+Nn o n n n—+oo

D’apres le théoréme d’encadrement, on en déduit que (v,,) converge vers 0.

Q 28. D’apres la question précédente, (v,) est décroissante et converge vers 0 et pour tout n € N,
up = (—1)"v,,. D’apres le théoreme spécial des séries alternées, il vient que Z Up converge.

N +oo +oo
Q29. Soit NEN: Sy —1=> up—> tp=— Y up.
n=0 n=0 n=N+1

Il faut utiliser le critere de majoration du reste des séries alternées.

1 . 1
sin(mz) 1
Sy —1| < = 220 < ———d
S5 — I < fuwn] /0z+N+1x /Ox+N+1$

N+2 1
=MmE+N+D)=h(—")=In(1+-—v
[In(2 o D(N+1) n( N+1)

On peut développer une méthode pour calculer une valeur approchée de [ a epsilon prés en supposant
connues les valeurs de la suite (u,). (On ne demande pas de résultat numérique.)

Eneffet,siln(l—l—ﬁ)<6©1+N#H<66©N+1>667

1
11 suffit de prendre N = Le—lj et alors Sy est une valeur approchée de [ a € pres.
ec —
Q 30. On pose t = z 4+ n pour obtenir :

_ n " sin(r(t — n))
= (1) /n =) g

Puis : sin(m(t — n)) = sin(nt — nw) = sin(nt) cos(nm) — cos(nt) sin(nw) = sin(nt) cos(nm) = sin(wt)(—1)".

Donc on obtient bien : T
"% sin(wt
= / () o,
n t

Q 31. On a, par la relation de Chasles :

+oo +oo n+1 - +oo _:
sin(7t) sin(7t)
l= E Uy = E / ; dt = /0 ; dt
n=0 n=0"" A S

sin(mt)
t

+oo

s

Kulture : un étudiant un peu médium verrait que / dt = 5
0



