2TSI-MATHÉMATIQUES

A rendre le jeudi 14 septembre 2017 au plus tard

Les différents exercices sont indépendants.

EXERCICE 01

 $Soit\ t\ un\ paramètre\ r\'eel$, on considère dans tout le problème l'équation (d'inconnue Z) :

(1)
$$Z^2 - 2(1 + 2\cos t + 2i\sin t)Z - 3 = 0.$$

De même, on définit l'équation (d'inconnue Z):

(2)
$$Z^2 - 2(1 + 2\cos t - 2i\sin t)Z - 3 = 0.$$

- 1. Déterminer les solutions de (1) :
 - (a) dans le cas où t = 0.
 - (b) dans le cas où $t = \pi$.
- 2. On veut déterminer les valeurs de t pour lesquelles les solutions de (1) sont réelles.
 - (a) Vérifier que si Z est solution de (1), \bar{Z} est solution de (2).
 - (b) Montrer que si Z est solution réelle de (1) alors Z est aussi solution de (2).
 - (c) En déduire que si Z est solution réelle de (1) alors $\sin t = 0$ nécessairement.
 - (d) On suppose $t = k\pi$, où k est un entier relatif. Calculer les solutions de (1) en fonction de k et vérifier qu'elles sont toutes réelles. Sont-elles toujours distinctes?

On revient au cas général. Dans la suite du problème on note Z' et Z'' les solutions (éventuellement non réelles de (1).

- 3. On appelle P le point d'affixe $\frac{1}{2}\left(Z'+Z''\right)$.
 - (a) Soit l'équation $aZ^2 + bZ + c = 0$, à coefficients a, b et c complexes avec $a \neq 0$. Démontrer que si Z_1 et Z_2 sont les deux solutions complexes (et non nécessairement distinctes) de cette équation, alors :

$$Z_1 + Z_2 = -\frac{b}{a}$$
 et $Z_1 Z_2 = \frac{c}{a}$.

- (b) Démontrer alors sans calculer explicitement Z' et Z'' que P a pour affixe $1+2\cos t+2i\sin t$.
- (c) En déduire que P décrit un cercle suivant les valeurs de t. On donnera le centre et le rayon de ce cercle.
- 4. On note Δ le discriminant de (1).
 - (a) Exprimer Δ sous forme d'un produit d'un réel et de l'exponentielle d'un nombre imaginaire pur
 - (b) Déterminer les valeurs de t pour lesquelles Z' = Z''.
 - (c) On suppose ici $1 + 2\cos t > 0$. Déterminer les complexes z tels que $z^2 = \Delta$. En déduire les expressions de Z' et de Z''.
 - (d) Reprendre la question précédente avec $1 + 2\cos t < 0$.

- 5. On pose dans cette question Y' = Z' 3 et Y'' = Z'' 3.
 - (a) Montrer que si $1 + 2\cos t > 0$ alors Y' et Y'' ont le même module.
 - (b) On suppose maintenant que $1 + 2\cos t < 0$.
 - i. Montrer que l'on peut écrire Y' et Y'' sous la forme

$$2e^{i(\frac{t}{2}+\frac{\pi}{2})}A(t) \text{ et } 2e^{i(\frac{t}{2}+\frac{\pi}{2})}B(t),$$

où
$$A(t) = 2\sin\frac{t}{2} + \sqrt{-1 - 2\cos t}$$
 et $B(t) = 2\sin\frac{t}{2} - \sqrt{-1 - 2\cos t}$.

- ii. Montrer que le produit A(t)B(t) vaut 3.
- iii. Conclure que Y' et Y'' ont le même argument.

EXERCICE 02

1. Calculer $\arcsin(\sin \alpha)$ et $\arccos(\cos \alpha)$ dans les cas suivants :

$$\alpha = \frac{59}{5} \pi, \ \alpha = \frac{84}{5} \pi, \ \alpha = \frac{76}{5} \pi.$$

(Il y a donc six calculs à faire.)

2. Ici ϕ est un réel appartenant à $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. Montrer successivement :

$$\cos 2\phi = \frac{1 - \tan^2 \phi}{1 + \tan^2 \phi}, \sin 2\phi = \frac{2 \tan \phi}{1 + \tan^2 \phi}, \tan 2\phi = \frac{2 \tan \phi}{1 - \tan^2 \phi}.$$

3. On pose $E = \mathbb{R} \setminus \{-1, 1\}$. On considère les fonctions définies sur E,

$$f_1: x \mapsto \arccos\left(\frac{1-x^2}{1+x^2}\right), f_2: x \mapsto \arcsin\left(\frac{2x}{1+x^2}\right).$$

(a) Déterminer la dérivée de f_1 sur $E \setminus \{0\}$.

Dans la suite de cette question, on pose : $\phi = \arctan x$ avec $x \in E$.

- (b) Calculer, en fonction de la position de ϕ , sous forme de différentes fonctions affines, une expression de $g_1(\phi) = f_1(\tan \phi)$.
- (c) Procéder de même avec $g_2(\phi) = f_2(\tan \phi)$.
- (d) Soit $h: x \mapsto f_1(x) + f_2(x)$. On pose $g(\phi) = g_1(\phi) + g_2(\phi)$. En utilisant les questions précédentes, déterminer l'expression de $g(\phi)$ dans les cas suivants :

$$\phi\in\left]-\frac{\pi}{2},-\frac{\pi}{4}\right[,\,\phi\in\left]-\frac{\pi}{4},0\right[,\,\phi\in\left]0,\frac{\pi}{4}\right[,\,\phi\in\left]\frac{\pi}{4},\frac{\pi}{2}\right[.$$

En déduire l'expression de h (en fonction de x).