Devoir libre n°02

2TSI. Mathématiques

A rendre le jeudi 05 octobre 2017 au plus tard

Les deux exercices sont indépendants et peuvent être faits dans n'importe quel ordre.

Exercice 01

On définit $f_0: \mathbf{R}_+ \to \mathbf{R}$, $x \mapsto e^{-x}$, puis pour $n \in \mathbf{N}^*$, $f_n: \mathbf{R}_+ \to \mathbf{R}$, $x \mapsto e^{-x}x^n$, et pour tout $n \in \mathbf{N}$,

$$L_n: \mathbf{R}_+ \to \mathbf{R}, x \mapsto \frac{e^x}{n!} f_n^{(n)}(x).$$

(On rappelle que $f_n^{(n)}$ désigne la dérivée $n^{\text{ème}}$ de f_n et que par convention, $f_0^{(0)} = f_0$.

- 1. Déterminer L_0 , L_1 et L_2 .
- 2. Montrer, en utilisant la formule de Leibniz, que, pour tout $n \in \mathbb{N}$,

$$f_{n+1}^{(n+1)}(x) = x f_n^{(n+1)}(x) + (n+1) f_n^{(n)}(x).$$

3. En déduire, pour tout $n \in \mathbf{N}$ et pour tout $x \in \mathbf{R}_+$,

$$(n+1)L_{n+1}(x) = x L'_n(x) + (n+1-x)L_n(x).$$

- 4. Ici, on va déterminer l'expression de L_n .
 - (a) Montrer que pour tout $k \in [0, n]$, $\frac{d^{n-k}}{dx^{n-k}}(x^n) = \frac{n!x^k}{k!}$.
 - (b) Montrer que pour tout $n \in \mathbf{N}^*$ et pour tout $k \in [1, n]$, on a :

$$\frac{\binom{n}{k}}{(k-1)!} + \frac{(n+1)\binom{n}{k}}{k!} + \frac{\binom{n}{k-1}}{(k-1)!} = (n+1)\frac{\binom{n+1}{k}}{k!}.$$

- (c) Montrer que, pour tout $n \in \mathbf{N}$, $L_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{(-1)^k}{k!} x^k$, de deux manières :
 - i. en utilisant une méthode directe par récurrence et la question précédente.
 - ii. en utilisant la formule de Leibniz.
- 5. On veut montrer que:

$$\forall n \in \mathbf{N}^{\star}, L'_n(x) - L'_{n+1}(x) = L_n(x).$$

(a) Montrer que pour tout $n \in \mathbb{N}^*$ et pour tout $x \in \mathbb{R}_+$,

$$L'_n(x) - L'_{n+1}(x) = \sum_{k=1}^n \left[\binom{n}{k} - \binom{n+1}{k} \frac{(-1)^k x^{k-1}}{(k-1)!} \right] + \frac{(-1)^n x^n}{n!}.$$

(b) Conclure.

Exercice 02

Extrait de l'écrit des Concours Arts et Metiers ParisTech-ESTP-POLYTECH (banque E3A) pour la filière MP en 2017

Pour tout polynôme $P \in \mathbb{R}[X]$, on note P' son polynôme dérivé. Ici, n est un entier naturel non nul et on note $\mathbb{R}_n[X]$ l'espace vectoriel des polynômes dont le degré est inférieur ou égal à n. On considère l'application:

$$\phi: \mathbb{R}[X] \to \mathbb{R}[X], P \mapsto P - P'.$$

- 1. Montrer que ϕ induit sur $\mathbb{R}_n[X]$ un endomorphisme. On note dans la suite ϕ_n cet endomorphisme.
- 2. Expliciter la matrice de ϕ_n sur la base canonique de $\mathbb{R}_n[X]$.
- 3. Démontrer que ϕ_n est un automorphisme de $\mathbb{R}_n[X]$.
- 4. En déduire qu'il existe une unique famille de polynômes $s_0, s_1, ..., s_n$ telle que :

 - (i) $\forall i \in [0, n], \ \phi_n(s_i) = \frac{X^i}{i!}.$ (ii) $(s_0, s_1, ..., s_n)$ est une base de $\mathbb{R}_n[X]$.
- 5. On note Id l'endomorphisme identité de $\mathbb{R}_n[X]$ et δ l'endomorphisme induit par la dérivation sur le \mathbb{R} -espace vectoriel $\mathbb{R}_n[X]$. Justifier :

$$(Id - \delta) o (Id + \delta + \dots + \delta^n) = Id.$$

6. En déduire l'expression de s_i en fonction de X pour tout $i \in [0, n]$.

Exercice 03

Extrait de problème posé à l'écrit des concours Arts et Metiers Paris Tech-ESTP-Polytech, banque E3A, filière PC en 2017

Dans certaines questions de cet exercice, on écrira des programmes en langage Python.

- 1. Soient a et b deux réels, $f:[a,b]\to\mathbb{R}$ une fonction continue telle que f(a)f(b)<0.
 - (a) Justifier que f s'annule sur [a, b].
 - (b) Écrire en Python une fonction $Python_rech_dicho$ prenant en arguments une fonction f, deux flottants a et b tels que f(a)f(b) < 0, une précision eps et qui renvoie un couple de réels encadrant un zéro de f à une précision eps près.
- 2. Soit f une fonction continue de [0,1] dans [0,1].
 - (a) Montrer que f a un point fixe, c'est-à-dire une valeur $c \in [0,1]$ telle que f(c) = c.
 - (b) Écrire en Python une procédure rech_pt_fixe qui prend en arguments une fonction f que l'on suppose continue de [0,1] dans [0,1], une précision eps et qui renvoie un couple de réels encadrant un point fixe de f à une précision eps près. On pourra utiliser $rech_dicho$.