Devoir libre n°03

2TSI. Mathématiques

À rendre le 09 novembre 2017 au plus tard

Les deux exercices et le problème sont indépendants et peuvent être traités dans n'importe quel ordre. En priorité, il faut faire l'exercice 1 (Q1), l'exercice 02 (Q1,Q2), la partie A du problème (Q1,Q2), la partie B du problème (Q1, Q2, Q4(b), Q4(c)).

Exercice 01

Soit la fonction

$$f: n \mapsto \begin{cases} 1 & \text{si} & n=1\\ n/2 & \text{si} & n \text{ est pair} \\ 3n+1 & \text{si} & n \text{ est impair} \end{cases}.$$

- 1. Programmer la fonction f en Python.
- 2. Écrire une procédure nommée SYRACUSE qui reçoit un entier n et renvoie la suite des entiers obtenus en appliquant successivement f jusqu'à ce que l'on obtienne 1 ainsi que le nombre d'itérations nécessaires pour arriver à 1.

Appliquer à la main pour $n \in [1, 5]$. Que remarque t-on?

Attention, le compteur commence à 0 et donc pour n=1, L=[1] et i=0. Enfin, on remarquera que 1 est toujours le dernier élément de L.

3. Écrire en Python les commandes nécessaires pour obtenir le graphique du nombre d'itérations en fonction de l'entier initial.

Indications. Question 1: on jouera de l'if, de l'elif et de l'else.

Question 2 : on rappelle que pour créer un compteur, on tape initialement i=0 puis dans la boucle, on tape à chaque pas i+=1 et après la boucle (qui est du type while x>1:), le dernier i est le nombre d'itérations.

Question 3: on rappelle que l'on doit importer matplotlib.pyplot. Lire la méthode 4 aussi.

On note $\mathcal{S}_n(\mathbf{C})$ (respectivement $\mathcal{A}_n(\mathbf{C})$) l'ensemble des matrices symétriques (respectivement antisymétriques).

- 1. Montrer que Δ_A est un s.e.v de $\mathcal{M}_n(\mathbf{C})$ et que $\mathcal{A}_n(\mathbf{C}) \subset \Delta_A$.
- 2. Montrer que $\mathcal{S}_n(\mathbf{C})$ et $\mathcal{A}_n(\mathbf{C})$ sont deux sous espaces vectoriels de $\mathcal{M}_n(\mathbf{C})$. Puis montrer que $\mathcal{M}_n(\mathbf{C}) = \mathcal{S}_n(\mathbf{C}) \oplus \mathcal{A}_n(\mathbf{C})$.
- 3. Si $\operatorname{Tr}(A) \neq 2$, montrer que $\Delta_A = \mathcal{A}_n(\mathbf{C})$. Indication : on pourra partir de $M + M^T = \text{Tr}(M) A$ et faire Tr de chaque côté.
- 4. Si Tr(A) = 2 et $A \notin \mathcal{S}_n(\mathbf{C})$, déterminer Δ_A .
- 5. Si Tr(A) = 2 et $A \in \mathcal{S}_n(\mathbf{C})$, déterminer Δ_A .

Problème

Les trois parties sont indépendantes et le leitmotiv de l'ensemble est de proposer des pistes pour étudier les applications linéaires ou les endomorphismes dans R[X] et dans $R_n[X]$.

Partie A

Soit $P = \sum_{k=0}^{p} a_k X^k$ différent du polynôme nul et de degré p. Pour tout entier $n \geq 0$, on lui associe le

polynôme $D_n(P)$ défini par : $D_n(P) = (X^2 - 1)P''(X) + 2XP'(X) - n(n+1)P(X)$, où P' et P'' désignent les dérivées première et seconde de P.

- 1. Montrer que D_n est une application linéaire de $\mathbf{R}[X]$ dans $\mathbf{R}[X]$.
- 2. Vérifier que le polynôme $D_n(P)$ est de degré inférieur ou égal p, en distinguant les trois cas p = 0, p = 1 et $p \ge 2$. (Dans ce dernier cas, on pose $P = a_p X^p + ... + a_0$ et on remplacera dans l'expression de $D_n(P)$.)

En déduire que D_n est un endomorphisme de $\mathbf{R}_p[X]$.

- 3. On cherche à savoir sous quelles circonstances $D_n(P) = 0$, donc que $P \in \text{Ker } D_n$.
 - (a) Montrer que :

Si p = 0, $D_n(P)$ est le polynôme nul si et seulement si n = 0.

Si p = 1, $D_n(P)$ est un polynôme constant si et seulement si n = 1.

Si $p \geq 2$, le degré de $D_n(P)$ est strictement inférieur à p si et seulement si p = n.

En déduire que si P, différent du polynôme nul, vérifie $D_n(P) = 0$, son degré est nécessairement n.

- (b) Déterminer tous les polynômes P vérifiant $D_n(P) = 0$ dans chacun des cas particuliers n = 0, n = 1, n = 2, n = 3 et n = 4. (On utilisera le résultat du 2)a) pour démarrer et donc par exemple dans le cas n = 2, partir d'un polynôme P quelconque de degré 2 et remplacer dans $D_2(P)$.)
- 4. Pour tout polynôme P de degré $n \ge 2$, expliciter les coefficients du polynôme $D_n(P) = \sum_{k=0}^n b_k X^k$ en fonction des coefficients de P.

Partie B

On considère l'application f de $\mathbf{R}[X]$ dans $\mathbf{R}[X]$ définie par :

$$f(P)(X) = (8+3X)P(X) + (X^2 - 5X)P'(X) + (X^2 - X^3)P''(X).$$

L'objet de l'exercice est de trouver les sous-espaces vectoriels F de $\mathbf{R}[X]$, stables par f, vérifiant : $\exists n \in \mathbf{N}$ tel que $F \subset \mathbf{R}_n[X]$.

- 1. Montrer que f est un endomorphisme de $\mathbf{R}[X]$.
- 2. Déterminer le degré de f(P) en fonction de celui de P (on étudiera à part le cas deg P=3).
- 3. En déduire que le seul sous-espace vectoriel $\mathbf{R}_p[X]$, avec $p \in \mathbf{N}$, stable par f, est $\mathbf{R}_3[X]$.
- 4. L'endomorphisme de $\mathbf{R}_3[X]$ induit par f est noté \hat{f} .
 - (a) Montrer qu'un sous-espace vectoriel $F \subset \mathbf{R}_p[X]$, non réduit à $\{0_{\mathbf{R}[X]}\}$ et stable par f, est inclus dans $\mathbf{R}_3[X]$ et stable par \hat{f} .
 - (b) Écrire la matrice représentant l'endomorphisme \hat{f} dans la base canonique de $\mathbf{R}_3[X]$.
 - (c) Trouver les valeurs propres et les sous-espaces propres associés de \hat{f} .
 - (d) Quels sont les sous-espaces vectoriels de $\mathbf{R}[X]$ stables par \hat{f} ?

Partie C

On note $E = \mathbf{K}[X]$ et on considère l'endomorphisme φ de E défini par :

$$\varphi(P) = P\left(\frac{X}{2}\right) + P\left(1 - \frac{X}{2}\right) - 2P(X)$$

- 1. Déterminer le degré de $\varphi(P)$ en fonction du degré du polynôme P. Déterminer $\operatorname{\mathsf{Ker}} \varphi$.
- 2. On pose $Q_0 = 1$ et, pour $n \in \mathbb{N}^*$, $Q_n = \varphi(X^n)$. Montrer que la famille $(Q_n)_{n \in \mathbb{N}}$ est une base de E.
- 3. On considère l'application θ de E dans \mathbf{R} définie par : $\theta(P) = \int_0^1 P(t) dt$.
 - (a) Montrer que θ est linéaire.
 - (b) Montrer $\operatorname{Im} \theta = \operatorname{Ker} \varphi$.