Propriétés physiques de l'eau de mer

	INTRODUCTION2			
1.1. 1.2. 1.3.	DONNÉES HYDROLOGIQUES DE BASE3Pression3Température3Conductivité3	4.1. 4.2.	PROPRIÉTÉS DE LA COLONNE D'EAU	;1 2
1.4.	La salinité, grandeur hydrologique de base 4	5 .	COEFFICIENTS D'ÉCHANGES MOLÉCULAIRES	2
	ÉQUATION D'ÉTAT DE L'EAU DE MER 5	5.1.	Viscosité dynamique η.	
2.1.	Masse volumique ρ5		Viscosité cinématique <i>v</i>	
2.2.	Effet de la température	5.2.	Conductivité thermique k	2
	sur la stabilité verticale des eaux8		Coefficient de diffusion thermique K	2
2.3.	Excès de masse volumique9	5.3.	Coefficient de diffusion moléculaire D	2
2.4	Autres grandeurs reliées à la masse volumique 10		Du repos à la turbulence. Nombre de Reynolds	
3.	PROPRIÉTÉS THERMIQUES ET THERMODYNAMIQUES 11	5.5	Double diffusion	2
3.1.	Température de congélation et d'ébullition.	6.	AUTRES PROPRIÉTÉS PHYSIQUES	2
	Pression de vapeur saturante11	6.1.	Pression osmotique π	2
3.2.	Enthalpies de fusion et de vaporisation12	6.2.	Indice de réfraction n	2
3.3.	Coefficients élastiques α_V , β , κ_T et $\kappa_{\$}$	6.3.	Tension superficielle τ	2
3.4.	Capacité thermique massique C_p 14		RÉFÉRENCES BIBLIOGRAPHIQUES	2
3.5.	Taux de variation adiabatique de température		TELENOLO BIBLIOGRAI TIRGOLO	
	Gradient adiabatique de température15			
3.6.	Température potentielle θ 16			
3.7.	Vitesse du son17			

La masse totale des sels dissous dans un kg d'eau de mer varie d'une eau de mer à une autre. Par contre les proportions relatives des principaux sels restent constantes. Cette propriété est évoquée sous l'appellation de principe de Marcet ou de loi de Dittmar. Cette « loi » n'est pas absolue. C'est simplement une excellente approximation qui permet de représenter l'ensemble des constituants l'eau de mer par le terme salinité (voir le document Le Sel de LA Mer).

L'eau de mer constitue ainsi un système parfaitement défini par trois variables d'état : la salinité S, la température t et la pression p. Toutes ses propriétés physiques sont donc, en principe, dérivables à partir de S, t et p. C'est par exemple le cas de la masse volumique ρ calculable par la relation $\rho = f(S, t, p)$ appelée équation d'état de l'eau de mer.

A partir des années 1970, l'usage des sondes *in situ* pour le recueil des données hydrologiques de base et de l'informatique pour le calcul des grandeurs dérivées commençait à s'imposer. C'est pourquoi il avait alors paru nécessaire d'entreprendre de nouvelles recherches sur les propriétés physiques des eaux de mer et de proposer des algorithmes de calcul en remplacement des différentes tables internationales alors existantes. Ces travaux ont abouti à la formulation de l'Équation d'État Internationale de l'Eau de Mer, ou EOS 80, publiée par l'UNESCO en 1981. La plupart des algorithmes océanographiques actuellement en usage ont servi à élaborer cette équation, ou en sont dérivés.

Il n'est donc pas étonnant que la bibliographie citée dans les pages qui suivent se rapportent principalement à la décennie 1970 – 1980.

A plusieurs reprises (voir Feistel, 2003) il a été proposé de remplacer l'équation d'état de l'eau de mer par une relation G = f(S, t, p) où G représente l'enthalpie libre (ou fonction de Gibbs). En effet, la plupart des propriétés physiques de l'eau de mer peuvent être dérivées de manière simple et rationnelle d'une telle équation.

Mais l'emploi d'une nouvelle équation n'améliorerait guère la qualité des résultats actuels. En effet ce sont essentiellement les « écarts à loi de Dittmar » qui limitent la précision des résultats déduits des mesures *in situ*.

Il est donc probable que EOS 80 a encore quelques beaux jours à vivre. Une nouvelle révision des algorithmes s'imposera certainement lorsqu'un nouveau capteur – un capteur de masse volumique ? – aura remplacé, ou doublé, le capteur de conductivité actuellement chargé d'évaluer le terme de salinité sur les sondes hydrographiques.

Rappelons enfin que ces algorithmes ne s'appliquent pas aux eaux des mers intérieures, telles que la mer Caspienne, ou des lacs salés. Ces étendues d'eau ont un contenu salin différent de celui de l'eau de mer.

1. Données hydrologiques de base

Dans l'état actuel de la technique océanographique, les trois grandeurs physiques couramment mesurées, notamment avec les sondes in situ, sont la pression, la température et la conductivité électrique.

1.1. Pression

L'unité de pression du système international est le pascal (Pa), qui correspond à une force de 1 newton m⁻². En océanographie, on utilise toujours le bar ou son sousmultiple le décibar (la pression atmosphérique vaut à peu près 1 bar, tandis que la pression hydrostatique d'une colonne de 1 m d'eau vaut à peu près 1 décibar).

1 bar =
$$10^5$$
 Pa et 1 décibar = 10^4 Pa

Le domaine des pressions océanographiques s'étend de 0 à 10 000 dbar, pression correspondant à peu près à une hauteur d'eau de 10 000 m.

Avant d'utiliser les algorithmes de calcul, il faut vérifier l'unité dans laquelle les valeurs de pression doivent être exprimées, notamment bar ou décibar. De plus il faut savoir que les océanographes ont l'habitude de mesurer des pressions hydrostatiques sensu stricto et prennent donc comme niveau de pression zéro le niveau de la mer. Ainsi la jauge de pression d'une sonde océanographique est réglée pour afficher un valeur nulle quand elle est soumise à la seule pression atmosphérique. Pour calculer une donnée relative à une eau de surface, c'est la valeur p=0 qu'il convient de prendre.

1.2. Température

La température est exprimées en degrés Celsius (°C). Le domaine des températures océaniques s'étend de –2°C, qui est, à peu près, la température de congélation des eaux de mer, jusqu'à un peu plus de 30°C. La température moyenne de l'Océan Mondial est de 4°C. Les eaux tièdes sont confinées sur une faible épaisseur et, à toutes les latitudes les eaux sous jacentes sont froides. Il y a deux exceptions, la Méditerranée où la température des eaux profondes n'est jamais inférieure à 13°C et la Mer Rouge où elle ne descend pas sous 21,5°C.

Les logiciels de traitement des données océanographiques (Seasoft de la firme Seabird) offrent le choix entre l'IPTS 68 (international practical temperature scale 1968) et l'ITS 90 (international temperature scale 1990). La différence entre les deux échelles est minime. Entre 0 et 40°C, on peut utiliser la relation :

$$t_{90}$$
 (°C) = 0,0002 + 0,99975 t_{68} (°C)

Toutefois, par cohérence avec les algorithmes océanographiques, tous antérieurs à 1990, il vaudra mieux utiliser l'IPTS 68.

1.3. Conductivité

La conductivité électrique des eaux de mer C et les rapports de conductivité K_{15} , R_{15} et $R_{\rm t}$ sont détaillés dans le document : Le Sel de la Mer.

Les données de conductivités *in situ* mesurées par les sondes sont enregistrées avec la pression et la température dans des fichiers informatiques. Par la suite elles sont converties en salinités et ne figurent généralement plus dans les listes de données publiés.

PROPRIÉTÉS PHYSIQUES DE L'EAU DE MER

1.4. La Salinité, grandeur hydrologique de base

La conductivité étant une grandeur directement mesurée, au même titre que la température et la pression, il serait logique de l'archiver définitivement, avec t et p, comme donnée océanographique de base, et de calculer ensuite n'importe quelle autre propriété physique X de l'eau de mer à partir d'une équation $ad\ hoc\ X = f(p,\ t,\ C)$.

Mais la salinité est une grandeur si familière, que les océanographes n'ont pu se résoudre à l'abandonner. Après avoir calculé S à partir d' EPS 78, on abandonne la conductivité et on retient S, t et p comme données de base. Toutes les grandeurs qui sont dérivées par la suite sont calculées à partir de relations : X = f(p, t, S).

De plus la salinité est une grandeur conservative et additive, ce qui n'est pas le cas de la conductivité. Une masse d'eau de S=35 titre toujours 35, quelles que soient les variations de température et de pression auxquelles elle est soumise. Un mélange à 50 % entre une eau de S=35 et une eau de S=36.

Nous avons déjà indiqué que les salinités sont des nombres sans dimension. Parfois ces valeurs sont suivies d'abréviations inutiles telles que p.s.s. (*practical salinity* scale) ou p.s.u. (*practical salinity unit*).

Dans l'océan ouvert les salinités varient dans des limites étroites, de 33 à 37 (Fig. 1). La salinité moyenne de l'Océan Mondial est de 34,78. Dans quelques mers semifermées jouant le rôle de bassins de dilution ou de bassins de concentration on trouve des salinités beaucoup plus

faibles ou plus fortes : moins de 10 en Mer Baltique, de 18 à 22 en Mer Noire, de 37 à 39 en Méditerranée, de 40 à 42 en Mer Rouge. Mais le plus grand de ces bassins, la Méditerranée, ne représente que 0,7 % de la surface et 0,27 % du volume de l'Océan mondial.

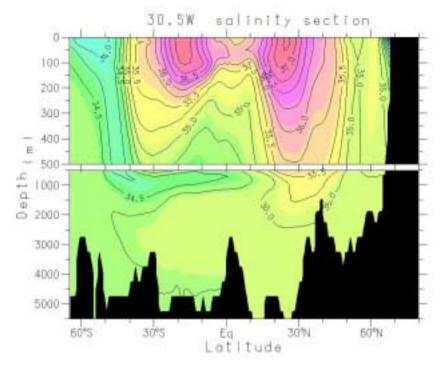


FIG. 1 — Répartition des salinités selon une section méridionale de l'Océan Atlantique, le long du méridien 30.5 W. En surface, les salinités les plus élevées se trouvent au niveau des ceintures tropicales et les plus faibles, aux hautes latitudes. La plus grande partie des eaux a une salinité comprise entre 34 et 36. Image A. M. Schiller.

http://ocean.otr.usm.edu/~ahiller/marchem

2. ÉQUATION D'ÉTAT DE L'EAU DE MER

Un système physico-chimique en équilibre peut être décrit par un nombre illimité de propriétés : température, pression, masse volumique, viscosité, constante diélectrique, indice de réfraction, etc. Toutefois ces informations sont redondantes, car le système est complètement décrit par un nombre limité de variables indépendantes. Ce nombre, ou variance V, est fixé par la règle des phases :

$$V = n + 2 - \phi$$

- n nombre de constituants indépendants
- φ nombre de phases

Ainsi toutes les propriétés de l'eau pure (V=2) sont parfaitement déterminées par la connaissance de deux grandeurs. Si on fixe arbitrairement la viscosité à 1,138 \times 10⁻³ m⁻¹ s⁻¹ et la constante diélectrique à 82,05, la température sera obligatoirement 15° C, la pression 1013,25 hPa, la masse volumique 999,102 kg m⁻³, la tension de vapeur 1705 Pa, etc. Dans cet exemple, la viscosité η et la constante diélectrique ε constituent les variables d'état. Toute autre propriété X se trouve obligatoirement fixée par les deux précédentes et est, en principe, calculable par une équation d'état $X=f(\eta,\varepsilon)$. Mais l'usage veut que l'on réserve le nom d'équation d'état à une expression de la forme V=f(t,p, etc.), où V représente le volume (ou la masse volumique) et où pression et température figurent en priorité parmi les variables indépendantes (cf. l'équation d'état des gaz parfaits).

L'eau de mer est un milieu dont la composition relative est constante. Elle constitue un système complètement décrit par 3 propriétés physiques. Ainsi l'algorithme EPS 78, $S=f(t,\ p,\ C)$, peut être considéré comme une équation d'état de l'eau de mer. Mais c'est la relation $\rho=f(t,\ p,\ S)$ qui est appelée Équation d'état de l'eau de mer.

2.1. Masse volumique ρ (density)

Autrefois, on utilisait le terme *densité* qui est le rapport entre la masse d'un corps à celle d'un volume égal d'eau pure à 4°C. C'est un nombre sans dimension. La masse volumique de l'eau pure à 4°C étant 0,999 975 g cm⁻³, la valeur numérique de la densité et de la masse volumique exprimées en g cm⁻³ différent très peu, ce qui peut être une source d'erreur. La confusion est entretenue du fait que masse volumique se traduit en anglais par *density*, tandis que la densité s'appelle *specific gravity*. La question ne se pose plus, car la densité est proscrite, tout au moins dans le domaine de l'océanographie. On doit utiliser la masse volumique, symbole ρ, exprimée en kg m⁻³.

La masse volumique est la grandeur dérivée la plus utilisée en océanographie. La stabilité verticale des eaux est conditionnée par une répartition des masses volumiques allant en croissant avec la profondeur. A certaines profondeurs, se situent des zones d'augmentation rapide appelées pycnoclines. Elles constituent des barrières qui limitent fortement les échanges de matière et d'énergie à la verticale. Les masses volumiques *in situ* permettent de reconstituer le champ de pressions et de calculer les courants marins. Voir le document Théorie et Pratique du CALCUL DYNAMIQUE.

On calcule la masse volumique en fonction de S, t et p grâce à l'Équation d'État Internationale de l'Eau de Mer 1980, publiée par l'UNESCO (1981). Elle comporte 11 polynômes auxquels sont associés 41 coefficients numériques.

L'algorithme EOS 80 (Equation of State 1980) présenté dans l'encadré 1 a été réorganisé en lignes de calcul et les noms de variables simplifiés. La pression P est entrée en décibar, la température T en °C et la salinité S en unité pratique. La masse volumique RHO est obtenue en kg m⁻³.

Valeurs de contrôle de l'algorithme :

```
S = 0, t = 5°C et p = 0 dbar, RHO = 999,966 75 kg.m<sup>-3</sup>

S = 35, t = 5°C et p = 10000 dbar, RHO = 1069,48914 kg.m<sup>-3</sup>
```

Éos, déesse de l'Aurore, est sœur de Séléné, la Lune, et d'Hélios, le Soleil. C'est la mère des Vents et de l'Étoile du matin (le petit génie porteur d'une torche dans la fresque ci-dessous). Cette déesse est une nymphomane. Elle fait grande consommation d'amants et de maris. Ayant sollicité pour l'un d'eux l'immortalité, elle oublia de demander aussi la jeunesse éternelle. Lassée d'un mari devenu vieux, mais qui ne se décidait pas à mourir, elle le transforma en criquet.

L'Aurore précédant le char du soleil. Fresque peinte en 1613 par GUIDO RENI sur un plafond du Palais Rospigliosi, à Rome.

Encadré 1 – Organisation de l'algorithme EOS 80 en programme BASIC

```
A1 = 999.842594 : A2 = 6.793952E-2 : A3 = -9.095290E-3
A4 = 1.001685E-4 : A5 = -1.120083E-6 : A6 = 6.536332E-9
B1 = 0.824493
                 : B2 = -4.0899E - 3 : B3 = 7.6438E - 5
B4 = -8.2467E - 7
                : B5 = 5.3875E-9
                                   : C1 = -5.72466E - 3
C2 = 1.0227E-4
                : C3 = -1.6546E - 6 : D1 = 4.8314E - 4
E1 = 1.965221E+4 : E2 = 1.484206E+2 : E3 = -2.327105
E4 = 1.360477E-2 : E5 = -5.155288E-5 : F1 = 54.6746
F2 = -0.603459
                 : F3 = 1.09987E-2 : F4 = -6.1670E-5
G1 = 7.944E-2
                 : G2 = 1.6483E-2 : G3 = -5.3009E-4
H1 = 3.239908
                 : H2 = 1.43713E-3 : H3 = 1.16092E-4
H4=-5.77905E-7 : I1 = 2.2838E-3 : I2 =-1.0981E-5
I3=-1.6078E-6
                 : J1 = 1.91075E-4 : K1 = 8.50935E-5
K2=-6.12293E-6
                : K3 = 5.2787E-8
                                   : L1 = -9.9348E - 7
L2 = 2.0816E-8
                 : L3 = 9.1697E-10
INPUT T,S,P 'T en deg C, S en ups, P en dbar
P = P / 10
              'La pression est convertie en bar
SR=SQR(S)
A=A1+(A2+(A3+(A4+(A5+A6*T)*T)*T)*T)*T
B=B1+(B2+(B3+(B4+B5*T)*T)*T)*T
C=C1+(C2+C3*T)*T
D=A+(B+C*SR+D1*S)*S
E=E1+(E2+(E3+(E4+E5*T)*T)*T)*T
F = (F1 + (F2 + (F3 + F4 * T) * T) * T) * S
G=E+F+(G1+(G2+G3*T)*T)*SR*S
H=H1+(H2+(H3+H4*T)*T)*T
I=I1+(I2+I3*T)*T
J=H+(I+J1*SR)*S
K=K1+(K2+K3*T)*T
L=K+(L1+(L2+L3*T)*T)*S
M=G+(J+L*P)*P
RHO = D/(1-P/M)'Masse volumique en kg/m3
END
```

Des valeurs de ρ figurent dans le tableau 1. Dans les domaines de pressions, températures et salinités couverts par ce tableau, la pression est le terme qui influe le plus sur la masse volumique *in situ*.

- A t et S constantes, ρ augmente d'environ 4 % lorsque p varie de 0 à 10 000 dbar. Il est classique de souligner que le niveau des océans se trouverait surélevé d'environ 30 m si les eaux de mer étaient rigoureusement incompressibles.
- A t et à p constantes, ρ augmente d'environ 3 % lorsque S passe de 0 à 40.
- A S et p constants, ρ augmente de 0,6 à 1 % (selon le choix de S et p) lorsque t diminue de 30°C à 0°C.

Mais, lorsqu'on étudie la répartition verticale des masses d'eau, l'importance respective des trois variables p, S et t est radicalement inversée. Si deux masses d'eau sont en compétition pour occuper la même immersion, elles sont de facto soumises à la même pression. La variable p se trouve éliminée, tout au moins en première approximation. Parmi les deux variables restantes, t et S, la température a généralement un effet prépondérant car, dans une région donnée, les variations de température à la verticale peuvent dépasser 20° C, tandis que les variations de salinité sont au maximum de 2 à 3 unités. Toutefois, dans les eaux côtières où il existe de forts gradients de salinité et surtout dans les eaux polaires où la température est proche de 0° C sur toute la colonne d'eau, l'effet de la salinité peut être prépondérant.

Table	au 1 – Ma					entes
	pres	sions, tem	pératures	et salinit	és*	
р		Tempéra	ature (°C, IT	PS 68)	,	S
dbar	0°	10°	20°	25°	30°	
0	999,843	999,702	998,206	997,048	995,651	
100	1000,351	1000,180	998,664	997,499	996,096	
1000	1004,873	1004,430	1002,739	1001,512	1000,062	0
2000	1009,790	1009,058	1007,178	1005,884	1004,382	
5000	1023,885	1022,364	1019,962	1018,479	1016,827	
10000	1045,337	1042,772	1039,652	1037,902	1036,031	
0	1024,071	1023,051	1020,954	1019,569	1017,985	
100	1024,552	1023,507	1021,393	1020,003	1018,414	
1000	1028,826	1027,563	1025,306	1023,866	1022,238	30
2000	1033,477	1031,982	1029,571	1028,076	1026,406	
5000	1046,840	1044,708	1041,871	1040,221	1038,430	
10000	1067,280	1064,296	1060,866	1058,995	1057,023	
0	1028,106	1026,952	1024,763	1023,343	1021,729	
100	1028,582	1027,404	1025,199	1023,774	1022,155	
1000	1032,818	1031,431	1029,087	1027,613	1025,956	35
2000	1037,429	1035,817	1033,325	1031,798	1030,100	
5000	1050,678	1048,451	1045,547	1043,871	1042,057	
10000	1070,958	1067,907	1064,428	1062,538	1060,551	
0	1032,147	1030,862	1028,582	1027,127	1025,483	
100	1032,619	1031,311	1029,016	1027,556	1025,907	
1000	1036,818	1035,307	1032,879	1031,371	1029,686	40
2000	1041,389	1039,661	1037,089	1035,531	1033,807	
5000	1054,526	1052,206	1049,235	1047,533	1045,698	
10000	1074,650	1071,531	1068,004	1066,096	1064,092	

PROPRIÉTÉS PHYSIQUES DE L'EAU DE MER

^{*} Remarquer qu' aucune eau lacustre (S=0) ne se trouve naturellement soumise à des pressions supérieures à 2000 dbar (le record de profondeur est détenu par le Lac Baïkal avec 1741 m). De même, aucune eau de mer profonde océanique n'a une température supérieure à 10°C.

2.2. Effet de la température sur la stabilité verticale des eaux

En allant dans le sens des températures décroissantes, la masse volumique des eaux douces augmente jusqu'à la température de 3,98°C, puis diminue au delà, jusqu'à 0°C. Avec des eaux de plus en plus salées, la température de ce maximum diminue plus rapidement que le point de congélation. Lorsque la salinité atteint 24,7, maximum de masse volumique et point de congélation se trouvent confondus à -1,34°C. Pour des salinités plus fortes, le maximum de masse volumique n'existe plus. Les eaux de mer deviennent de plus en plus lourdes jusqu'à leur point de congélation (Fig. 2).

Cette particularité entraîne des comportements hydrologiques différents pour les lacs et les mers. A l'apparition de la saison froide, les eaux superficielles des lacs se refroidissent progressivement, et dans un premier temps, s'alourdissent. La structure verticale devient instable. Des convections s'amorcent et se poursuivent jusqu'à ce que les eaux deviennent homogènes. Si le refroidissement se poursuit en dessous de 4°C, la masse volumique des eaux superficielles commence à diminuer, ce qui interrompt les mouvements de convection. La surface du lac, immobile et exposée aux rigueurs du climat, peut prendre en glace rapidement, tandis que les eaux profondes isolées, restent à la température du maximum de masse volumique. C'est pourquoi, aux latitudes moyennes. la température hivernale des eaux profondes lacustres se stabilise au voisinage de 4°C (pour autant que la rigueur du climat ne fasse pas geler à cœur le lac, ce qui n'arrive que pour les petits lacs de haute montagne).

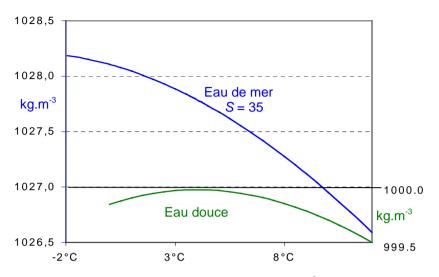


Fig. 2 – Variations de la masse volumique (kg m⁻³) de l'eau pure et d'une eau de mer de salinité 35, à la pression normale, avec la température (les deux échelles sont décalées de 27 kg.m⁻³).

Par contre, en mer, les mouvements de convection peuvent se poursuivre tant que toute la masse d'eau ne se trouve pas à la température du point de congélation (environ -1,9°C). Les eaux superficielles, toujours plus lourdes, échappent à la congélation en plongeant et sont remplacées en permanence par des eaux profondes moins froides. Seul un refroidissement intense et rapide, tel qu'il prévaut dans les hivers polaires, permet la formation de la banquise de mer.

C'est cette différence fondamentale dans le fonctionnement des mélanges d'eau à la verticale, bien plus que l'abaissement du point de congélation dû à la présence du sel (cf. § 3.1), qui explique que les eaux de mer gèlent beaucoup plus difficilement que les eaux douces.

2.3. Excès de masse volumique (density excess)

Les eaux de mer ont toujours une masse volumique légèrement supérieure à 1000 kg m⁻³. Pour éviter d'écrire des chiffres inutiles, on retranche 1000 kg m⁻³ aux valeurs de masse volumique. C'est ce qu'on appelle l'excès de masse volumique ou « sigma ». Par définition :

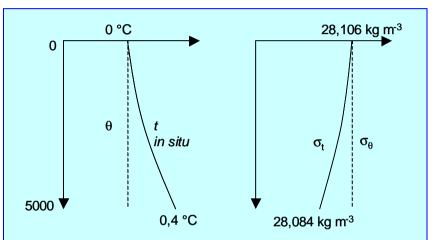
$$\sigma = \rho_{(S, t,p)} - 1000 \text{ kg m}^{-3}$$

Autrefois σ désignait le paramètre de Knudsen : $\sigma = (d-1)\times 10^3$, où d était la densité de l'eau de mer. Avec l'abandon de la densité au profit de la masse volumique, l'UNESCO avait recommandé, en 1985, d'appeler « gamma » l'excès de masse volumique. Mais les usagers n'ont guère suivi ces recommandations...

Pour évaluer la stabilité verticale d'une colonne d'eau dont les caractéristiques de t et S sont variables en fonction de la profondeur, il faut comparer les masses volumiques et vérifier qu'elles se répartissent en ordre croissant avec la profondeur. Une comparaison des masses volumiques calculés en fonction de t, S et p in situ n'est pas pertinente car même dans une eau homogène en t et S, donc instable, ρ augmente avec p, c'est à dire avec la profondeur (Tab. 1). C'est pourquoi plusieurs variantes de σ sont utilisées.

Le sigma-t

La manière la plus simple de procéder est de normaliser les masses volumiques à la pression atmosphérique, c'est à dire de calculer les $\rho_{(S, t, p = 0)}$. Dans ces conditions, le sigma s'appelle « sigma-t » et répond à la définition


$$\sigma_t = \rho_{(S, t, p=0)} - 1000 \text{ kg m}^{-3}$$
 (2)

Le sigma-thêta

Les comparaisons basées sur les σ_t sont parfois prises en défaut (voir encart ci-dessous). On affine donc les comparaisons en calculant l'excès de masse volumique potentielle σ_{θ} (« sigma-thêta »). Par définition :

$$\sigma_{\theta} = \rho_{(S, \theta, 0)} - 1000 \text{ kg m}^{-3}$$

 θ est la température potentielle de l'échantillon à p = 0.

Considérons un tube horizontal long de 5000 m rempli d'une eau homogène de S=35 et t=0 °C. Si ce tube est délicatement placé en position verticale, il est évident que la colonne d'eau reste en équilibre indifférent et qu'aucune convection ne peut se déclencher. Pourtant un observateur muni d'une sonde pourrait constater que la température, qui reste de 0 °C en surface augmente petit à petit avec la profondeur, atteignant 0,10 °C à 2000 m et 0,40 °C à 5000. m. Cet effet est dû à la compression adiabatique des eaux (cf. § 4.6.). Si l'observateur calculait les σ_t en se basant sur les températures in situ, il observerait que le profil des σ_t va en décroissant avec la profondeur et conclurait, à tort, à l'instabilité de la colonne d'eau. En revanche s'il base son calcul sur les températures potentielles, qui sont toutes de 0,00 °C, l'équilibre apparaît bien indifférent.

Les sigma-1, sigma-2, sigma-3...

Parfois aussi les comparaisons basées sur les σ_{θ} sont prises en défaut. (Fig. 3). On y remédie en calculant les σ pour une pression de référence proche des pressions où se situent les eaux que l'on veut comparer : 1000, 2000, 3000 dbar. Ces σ sont appelés σ_1 , σ_2 , σ_3 , etc. Par définition :

$$\begin{split} \sigma_1 &= \rho_{(S,\theta 1,1000)} - 1\,000 \; ; \quad \sigma_2 &= \rho_{(S,\theta 2,2000)} - 1\,000 \; ; \; \text{etc} \\ \theta_1, \; \theta_2, \; ... \theta_4 \; \text{\'etant la temp\'erature potentielle de l'\'echantillon} \\ \text{ramen\'e aux pressions 1 000, 2 000,...dbar (cf. § 3.6)}. \end{split}$$

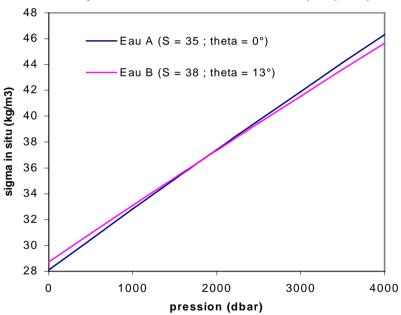


Fig. 3 – A 4000 dbar l'eau A de S = 35 et t in situ = - 0,29° a un σ de 46,310 kg m⁻³. L'eau B de S = 38 et t in situ = 13,65° a un σ de 45,642. A la profondeur de 4000 m l'eau A est la plus lourde et doit trouver son équilibre en se plaçant sous l'eau B. Pourtant si on comparait les σ_{θ} , on trouverait que l'eau A, avec 28,106 kg m⁻³ est plus légère que l'eau B qui fait 28,720. A et B ont le même σ = 36,734 kg m⁻³ à 1850 dbar.

2.4. Autres grandeurs directement reliées à la masse volumique

Volume massique α (specific volume)

C'est l'inverse de la masse volumique :

$$\alpha_{(S,t,p)} = 1/\rho_{(S,t,p)}$$
 en m³ kg⁻¹

Anomalie de volume massique δ (specific vol. anomaly)

C'est la différence entre le volume massique d'une eau de mer à S, t et p et une eau normale de salinité 35,000 de température 0 °C et soumise à la même pression, soit

$$\delta_{(S,t,p)} = \alpha_{(S,t,p)} - \alpha_{(35,0,p)} \text{ en m}^3 \text{ kg}^{-1}$$

Noter que $\alpha_{(35, 0, p)}$ n'a pas une valeur fixe contrairement aux 1000 kg.m⁻³ utilisés pour définir l'excès de masse volumique.

L'anomalie de volume massique est utilisée pour calculer avec précision la correspondance entre pression et profondeur. Voir le document : THÉORIE ET PRATIQUE DU CALCUL DYNAMIQUE.

Anomalie thermostérique $\Delta(S, t)$ (thermosteric anomaly)

Elle est parfois utilisée à la place de σ_t pour comparer des eaux de S et t différentes. Elle est calculable à partir de σ_t , d'après l'expression :

$$\Delta(S, t) = \left(\frac{1000}{1000 + \sigma t} - 0.97266\right) \times 10^{-3} \text{ m}^3 \text{ kg}^{-1}$$

 $0,97266 \times 10^{-3} \text{ m}^3 \text{ kg}^{-1}$ est le volume massique $\alpha_{(35, 0, 0)}$ d'une eau de salinité 35, à 0°C et à la pression atmosphérique normale, c'est à dire à p = 0.

3. PROPRIÉTÉS THERMIQUES ET THERMODYNAMIQUES

La plupart des propriétés énumérées ci-dessous dépendent des 3 variables S, t et p. Certaines sont mesurables avec précision en laboratoire. C'est notamment le cas des coefficients élastiques, de la capacité thermique et de la vitesse du son. Ces propriétés ont donc été mises à contribution pour élaborer l'équation d'état de l'eau de mer, notamment dans le domaine des pressions élevées. Par raison de réciprocité elles sont calculables en fonction de S, t, et p, par des algorithmes qui dérivent plus ou moins directement de EOS 80. Nous commençons toutefois cette énumération par des propriétés qui ne dépendent que de deux variables.

3.1. Température de congélation et d'ébullition. Pression de vapeur saturante

Ces trois propriétés se rapportent à un état d'équilibre entre deux phases : eau – glace pour le point de congélation ; eau – vapeur d'eau pour le point d'ébullition et la tension de vapeur saturante. Dans ces conditions et selon la règle des phases, la variance du système est réduite à 2. Le point de congélation et le point d'ébullition ne dépendent donc que de la salinité et de la pression. La pression de vapeur ne dépend, elle, que de la salinité et de la température.

Point de congélation (freezing point), point d'ébullition (boiling point) et tension de vapeur (vapour pressure) sont appelés en anglais colligative properties. En effet ces propriétés sont reliées entre elles par des relations simples

dans le cas des solutions non électrolytiques diluées (lois de cryométrie, d'ébulliométrie et de tonométrie de Raoult). Ce n'est plus exactement le cas pour des solutions ioniques concentrées comme l'eau de mer.

La température de congélation des eaux de mer peut être calculée par la formule de Millero & Leung (1976)

$$t_f$$
 = -0,0575 S + 1,710523×10⁻³ S ^{3/2} - 2,154996 × 10⁻⁴ S ² - 7,53×10⁻⁴ p

Valeur de contrôle : pour S = 40.0, et p = 500. dbar $t_f = -2.588567$ °C,

Des valeurs figurent dans le tableau 2.

Si l'effet de la pression sur le point de congélation peut avoir un certain intérêt en glaciologie, la connaissance du **point d'ébullition** des eaux de mer pour les sciences de l'environnement est de peu d'intérêt. A toutes fins « inutiles », nous en donnons des valeurs en dernière ligne du tableau 4.

Tableau 2 – Température de congélation et d'ébullition (°C) des eaux de mer en fonction de la salinité et de la pression* Salinité 20 25 30 10 15 35 40 dbar -0.274 | -0.542 | -0.812 | -1.083 | -1.358 | -1.638 | -1.922 | -2.212 -0.349 -0.618 -0.887 -1.159 -1.434 -1.713 -1.998 -2.287 100 -0.424 -0.693 -0.962 -1.234 -1.509 -1.788 -2.073 -2.363 200 -0.500 -0.768 -1.038 -1.309 -1.584 -1.864 -2.148 -2.438 300 -0.575 | -0.844 | -1.113 | -1.384 | -1.660 | -1.939 | -2.224 | -2.513 400 -0.650 | -0.919 | -1.188 | -1.460 | -1.735 | -2.014 | -2.299 | -2.589 500 100.08 | 100.75 | 100.23 | 100.31 | 100.39 | 100.49 | 100.54 | 100.64

 $^{^{\}star}$ Le point d'ébullition est donné en dernière ligne pour la seule pression normale p=0

En revanche, la tension de vapeur de l'eau de mer est d'un grand intérêt, puisque, sur 70 % de la surface du globe, l'atmosphère se trouve en contact avec de l'eau salée.

Les tables fournissant la pression de vapeur de l'eau pure en fonction de la température, au pas de 0,1°C sont d'un usage courant. Associées à ces données, on trouve également un certain nombre de polynômes d'ajustement s'inspirant de la relation de Clausius-Clapeyron.

$$\text{Ln}p_{H_2O} = a_1 + \frac{a_2}{T} + a_3 \text{Ln}T + a_4 T...$$

La présence de sels en solution diminue légèrement la tension de vapeur d'eau. Pour une eau de salinité 35, la réduction est d'environ 2 % (Tab. 7). Weiss & Price (1980) proposent la relation suivante valable pour des températures entre 273 K (0°C) à 313 K (40°C) et des salinités de 0 à 40.

$$\operatorname{Ln}_{H_2O} = 24,4543 - \frac{6745,09}{T} - 4,8489 \cdot \operatorname{Ln} \frac{T}{100} - 0,000544 \cdot S$$

T est la température absolue (T = t + 273,15).

 $p_{\rm H2O}$ est obtenue en atmosphère.

	Tableau 3 – Pression de vapeur d'eau (mm Hg) pour différentes températures et salinités*											
T, °C		Salinité										
	0	0 5 10 15 20 25 30 35										
0	4.58	4.57	4.56	4.55	4.53	4.52	4.51	4.50				
5	6.54	6.53	6.50	6.49	6.47	6.45	6.44	6.42				
10	9.21	9.18	9.16	9.13	9.11	9.09	9.06	9.04				
15	12.79	12.76	12.72	12.69	12.65	12.62	12.58	12.55				
20	17.54	17.49	17.45	17.40	17.35	17.30	17.26	17.21				
25	23.77	23.71	23.64	23.58	23.51	23.45	23.38	23.32				
30	31.85	31.76	31.67	31.59	31.50	31.42	31.33	31.25				
35	42.20	42.09	41.98	41.86	41.75	41.64	41.52	41.41				

^{* 1} mm Hg = $1,31579 \times 10^{-3}$ at = 133,322 Pa

3.2. Enthalpies de fusion et de vaporisation

L'enthalpie de fusion (*latent heat of fusion*) est la quantité de chaleur nécessaire pour transformer 1 kg de glace en eau. Selon cette définition, la chaleur de fusion de la banquise de mer est la même que celle de la glace d'eau douce, à ceci près que l'équilibre glace-eau douce intervient à 0°C, tandis que l'équilibre glace-eau de mer est réalisé à température plus basse (- 1,92°C pour une salinité de 35). Cette différence est minime et on peut adopter comme enthalpie de fusion à 0°C : 335,51 kJ kg⁻¹.

L'enthalpie de vaporisation de l'eau pure est la quantité de chaleur nécessaire pour transformer 1 kg d'eau en vapeur à la température de l'eau et sous une pression égale à la tension de saturation. L'enthalpie de vaporisation de l'eau de mer est la quantité de chaleur nécessaire pour produire 1 kg de vapeur d'eau à la température de l'eau de mer et sous une pression égale à la tension de saturation. Selon cette définition l'enthalpie de vaporisation des eaux de mer est égale à celle de l'eau douce, car à température donnée les différences de pression sont minimes (cf. Tab. 5). L'enthalpie de vaporisation de l'eau douce ne dépend que de la température. Selon les ASME Steam Tables (1967) la valeur est, par exemple, de 2501,6 kJ kg⁻¹ à 0°C et de 2256,9 kJ kg⁻¹ à 100°C. Pour le domaine des températures allant de 0 à 35° C, on pourra adopter la relation suivante :

$$L \text{ (kJ kg}^{-1}) = 2501,6 - 2,363 \times t \text{ (°C)}$$

L'enthalpie de vaporisation de l'eau est 2 à 10 fois plus grande que celle de la plupart des autres liquides. D'énormes quantités de chaleur sont transférées d'une zone à l'autre du globe terrestre par évaporation, transport de la vapeur d'eau par les courants atmosphériques, et recondensation.

3.3. Coefficients élastiques α_V , β , κ_T et $\kappa_{\$}$

Ces coefficients, habituellement définis à partir du volume V peuvent tout aussi bien être définis à partir de la masse volumique ρ .

Coefficient de dilatation thermique α_V (cubic thermal expansion coefficient)

$$\alpha_V = \frac{1}{V} \frac{\partial V}{\partial T} \Big|_{S,p} \equiv -\frac{1}{\rho} \frac{\partial \rho}{\partial T} \Big|_{S,p}$$

(pour l'eau pure, à la pression normale, ρ passe par un maximum à 3,98°C : dans ce cas particulier, la valeur de α_V est nulle).

Coefficient de contraction haline β (salinity contraction coefficient)

$$\beta = -\frac{1}{V} \frac{\partial V}{\partial S} \Big|_{T,p} \equiv \frac{1}{\rho} \frac{\partial \rho}{\partial S} \Big|_{T,p}$$

Coefficient de compressibilité isotherme κ_T (compressibility)

$$\kappa_T = -\frac{1}{V} \frac{\partial V}{\partial p} \Big|_{TS} \equiv \frac{1}{\rho} \frac{\partial \rho}{\partial p} \Big|_{TS}$$

Coefficient compressibilité isentropique κ_{\$} (isentropic compressibility)

On l'appelle aussi coefficient de compressibilité adiabatique. On prend ici \$ comme symbole de l'entropie pour le distinguer de la salinité S, mais ce n'est pas une notation classique.

$$\kappa_{\$} = -\frac{1}{V} \frac{\partial V}{\partial \rho} \Big|_{\$,S} \equiv \frac{1}{\rho} \frac{\partial \rho}{\partial \rho} \Big|_{\$,S}$$

(noter que β , κ_T et $\kappa_{\$}$ portent le signe "moins" dans leur définition, de manière à ce que les valeurs numériques correspondantes soient positives).

Les coefficients élastiques n'ont guère d'intérêt en eux mêmes, mais servent à calculer d'autres propriétés utiles. On obtient facilement les valeurs de $\alpha_V,\ \beta$ et κ_T par dérivation numérique de l'équation d'état de l'eau de mer. Mais $\kappa_\$$ nécessite de connaître en plus la capacité thermique massique. En effet il est relié à κ_T par la relation :

$$\kappa_{\$} = \kappa_T - \frac{T \cdot \alpha_V^2}{\rho \cdot C_p}$$

T est la température thermodynamique et $C_{\rm p}$ la capacité thermique massique.

On notera que le terme $T\cdot\alpha^2_{\text{V}}$ / $\rho\cdot C_{\text{p}}$ étant toujours positif, il s'ensuit que le coefficient de compressibilité isotherme est toujours plus grand que le coefficient de compressibilité isentropique, quel que soit le fluide. Cependant, alors que pour les gaz les valeurs sont nettement différentes (la théorie prévoit que $\kappa_{\text{T}}/\kappa_{\$} = 1,4$ pour les gaz diatomiques), pour l'eau, pure ou salée, la différence est minime (elle est nulle pour l'eau pure, à 3,98°C et à la pression normale). La même remarque s'applique aux capacités thermiques C_{p} et C_{V} discutées au paragraphe suivant, puisqu'on a le rapport C_{p} / $C_{\text{V}} = \kappa_{\text{T}}/\kappa_{\$}$.

2000

5000

1000

2000

5000

10000

0

10000

3849,3

3769,1

3956,4

3925.0

3896,4

3826,4

3750,6

3.4. Capacité thermique massique (specific heat capacity)

Lorsqu'on chauffe un système à pression constante. en lui fournissant une quantité de chaleur d Q_p , sa température s'accroît de dT. Le rapport $C_p = dQ_p / dT$ est appelé capacité thermique du système à pression constante. Lorsque l'on effectue l'opération à volume constant, le rapport $C_V = dQ_V / dT$ est appelé capacité thermique à volume constant. Lorsque le système est constitué par 1 kg d'un corps homogène, C_p et C_V sont appelés capacités thermiques massiques à pression ou à volume constant (unités : J kg⁻¹ K⁻¹). Selon les lois établies en thermodynamique:

$$C_p / C_V = \kappa_T / \kappa_S$$
 et $C_p - C_V = \frac{T\alpha_V^2}{\rho \kappa_T}$

Comme on l'a signalé au paragraphe précédent, le coefficient de compressibilité isentropique est toujours plus petit que le coefficient de compressibilité isotherme.

En fait la capacité thermique à volume constant des eaux douces ou marines est une grandeur qui n'est pas mesurable et qui ne représente aucun intérêt pour la dérivation d'autres grandeurs. En revanche, la capacité thermique à pression constante est une grandeur physique que l'on peut mesurer avec précision en laboratoire et dont on se sert pour dériver d'autres grandeurs très utiles, (notamment la vitesses du son et la température potentielle). La publication UNESCO (1983) fournit un algorithme de calcul de C_p en fonction de t, S et p.

Tab. 4 – Capacité thermique massique (J kg⁻¹ K⁻¹) d'eaux à différentes pressions, températures, et salinités Température °C (IPTS 68) р 0° 10° 30° Salinité en dbar 20° 4048.4 4041.8 4044.8 4049.1 0 4011,5 4012,9 4020,2 4026,9 1000 3978,0 3986,3 3976.2 4006.2 25 2000 3896.3 3919.6 3938.6 3952.0 5000 3807,7 3842,3 3866,7 3883,0 10000 4017,2 4013,8 4019.1 4024.7 0 3982,1 3986,2 3995.4 4003.2 1000 3973.3 3983,1 3950,3 3960,8 30 2000 3872,5 3897,0 3916,7 3930,6 5000 3788,2 3823,2 3847,4 3863,6 10000 3986.5 3986.3 3993.9 4000.7 0 3953,3 3959.9 3970,9 3979,7 1000 3923,1 3935,7 3949,6 3960,2

3874,7

3804,4

3959,3

3934,1

3910,9

3852,8

3785,9

3895.0

3828,3

3968,9

3946.8

3926,2

3873,5

3809.3

35

40

3909.2

3844,3

3977,0

3956,6

3937,6

3888,1

3825,1

3.5. Taux de variation adiabatique de température (adiabatic lapse rate). Gradient adiabatique

La variation de température des eaux de mer par compression isentropique peut être représentée par la dérivée $\partial T/\partial p$ |\$,s. On démontre que :

$$\left. \frac{\partial T}{\partial p} \right|_{SS} = \frac{\alpha_V \cdot T}{\rho \cdot C_p}$$

En utilisant la loi de l'hydrostatique $dp = \rho \ g \ dz \ (g \ étant$ l'accélération due à la pesanteur et z la profondeur, en allant vers le bas), on met en évidence le gradient adiabatique de température :

$$\left. \frac{\partial T}{\partial z} \right|_{\$,S} = \frac{g \cdot \alpha_V \cdot T}{C_p}$$

Une confusion de terminologie est souvent faite entre taux de variation adiabatique et gradient adiabatique du fait que leurs valeurs numériques sont pratiquement identiques lorsque la profondeur est exprimée en mètre et la pression en décibar.

Le taux de variation adiabatique est positif excepté pour les très faibles salinités, températures et pressions, circonstances pour lesquelles α_V est négatif. Les valeurs usuelles sont de l'ordre de 1 à 2×10^{-4} °C dbar⁻¹. Les valeurs précises peuvent être calculées à partir d'un algorithme proposé par Bryden (1973) et adopté par l'UNESCO (1983). Cet algorithme, remanié sous forme de lignes de calcul informatique, figure dans l'encadré 2 (sous programme BRYDEN:).

Encadré 2.— Programme de calcul du taux de décroissance adiabatique, appelé ici G1*, et de la température potentielle THETA

```
A1 = 3.5803E-5 : A2 = 8.5258E-06 : A3 = -6.8360E-08
A4 = 6.6228E-10 : B1 = 1.8932E-06 : B2 = -4.2393E-08
C1 = 1.8741E-08 : C2 = -6.7795E-10 : C3 = 8.7330E-12
C4 = -5.4481E - 14 : D1 = -1.1351E - 10 : D2 = 2.7759E - 12
E1 = -4.6206E - 13 : E2 = 1.8676E - 14 : E3 = -2.1687E - 16
F1 = 0.585786
                : F2 = -0.414214 : F3 = 4.828427
F4 = 3.414214
INPUT T,S,P,PR 'T en deg C, S en ups, P et PR en dbar
GOSUB BRYDEN
G1=G 'G1 taux de decroissance adiabatique deg C/dbar
O = (PR - P) / 2
T=T+O*G1
P=P+O
GOSUB BRYDEN
G2=G
T=T+Q*F1*(G2-G1)
GOSUB Bryden
G3=G
T=T+Q*(F4*G3-2*G2+F2*G1)
P=PR
GOSUB BRYDEN
G4 = G
THETA=T+Q*(G4-2*F4*G3+F3*G2+G1)/3
'THETA est la temperature potentielle en deg C
BRYDEN:
A=A1+(A2+(+A3+A4*T)*T)*T+(B1+B2*T)*(S-35)
C = (C1 + (C2 + (C3 + C4 * T) * T) * T + (D1 + D2 * T) * (S - 35)) * P
G = A+C+(E1+(E2+E3*T)*T)*P*P
RETURN
Valeurs de contrôle :
Pour T = 40 °C, S = 40, P = 10000 dbar et PR = 0 dbar
G = 3,255976E-4 \text{ deg C/dbar et THETA} = 36,89073 \text{ deg C}
```

^{*} Noter que G1 est indépendant de la pression de référence PR

3.6. Température potentielle θ (potential temperature)

Lorsqu'une masse d'eau, ayant acquis en surface ses caractéristiques de salinité et de température, s'enfonce en profondeur, elle constitue, dès lors, un système isolé des influences externes. Sous l'effet de la compression isentropique la température s'élève quelque peu. Cet effet, minime, passe généralement inaperçu à l'observation directe. Mais il se traduit parfois par une inversion du gradient vertical des températures lorsque les eaux sont homogènes sur une grande épaisseur (Fig. 3).

Pour éviter de tirer des conclusions erronées sur la stabilité verticale d'une colonne d'eau, on élimine l'effet de compression isentropique en calculant la température potentielle. C'est la température qu'acquerrait un échantillon d'eau de mer de salinité S, de température t et soumis à la pression p, s'il était amené de manière isentropique à une pression de référence pr. θ est donné par l'intégration :

$$\theta_{(S,t,p)} = t + \int_{p}^{pr} \left(\frac{\partial t}{\partial p}\right)_{\$} dp$$

où $(\partial t/\partial p)_{\$}$ est le taux de décroissance adiabatique G calculable par *l'algorithme de Bryden*.

Le calcul se fait par intégration numérique (méthode de Runge et Kutta au 4^{ème} ordre). L'encadré 2 regroupe sous forme de lignes de programme BASIC les algorithmes publiés par l'UNESCO (1983).

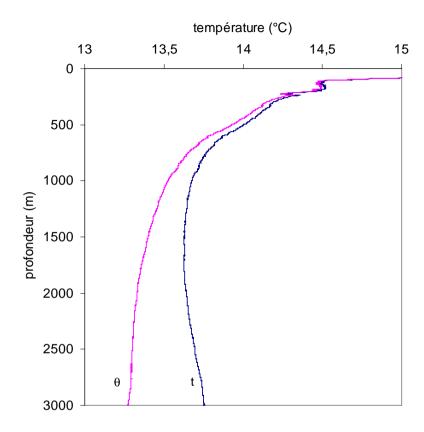


FIG. 3 – Températures *in situ t* et températures potentielles θ obtenues entre 0 et 3000 m de profondeur à une station de Méditerranée Orientale (lat. 37° 29.49 N long. $19^{\circ}00.65$ E). L'augmentation des températures, entre 1000 et 3000 m ne doit rien à un flux de chaleur géothermique. C'est l'effet de la compression isentropique. Le calcul des températures potentielles restitue un profil décroissant conforme au critère de stabilité verticale des eaux.

La température potentielle est habituellement calculée pour la pression de référence pr=0 (c. à d. à la pression atmosphérique normale). Des valeurs sont données dans le tableau 5. Pour comparer de manière plus précise les caractéristiques d'eaux profondes on calcule parfois les températures potentielles pour des pressions de référence 1000, 2000, 3000 dbar, etc. Ces températures potentielles s'appellent θ_1 , θ_2 , θ_3 , etc.

Tab. 5 – Température potentielle de l'eau pure et d'eaux de mer de différentes salinités, températures et à différentes pressions

de différentes saiinites, temperatures et à différentes pressions											
р		Tempéra	ature °C (IF	PTS 68)	i	S					
dbar	0°	10°	20°	25°	30°	U					
0	0,0000	10,0000	20,0000	25,0000	30,0000						
1000	+ 0,0192	9,9291	19,8479	24,8094	29,7718						
2000	+ 0,0167	9,8437	19,6870	24,6126	29,5397	0					
5000	- 0,1082	9,50865	19,1567	23,9878	28,8213						
10000	- 0,6415	8,7275	18,1349	22,8466	27,5603						
0	0,0000	10,0000	20,0000	25,0000	30,0000						
1000	- 0,0357	9,8864	19,8174	24,7850	29,7535						
2000	-0,0892	9,7611	19,6278	24,5651	29,5038	30					
5000	- 0,3458	9,3219	19,0211	23,8780	28,7372						
10000	- 1,0320	8,4164	17,9040	22,6561	27,4102						
0	0,0000	10,0000	20,0000	25,0000	30,0000						
1000	- 0,0448	9,8793	19,8123	24,7810	29,7505						
2000	- 0,1069	9,7473	19,6179	24,5572	29,4979	35					
5000	- 0,3856	9,2906	18,9985	23,8596	28,7231						
10000	- 1,0974	8,3643	17,8654	22,6242	27,3851						
0	0,0000	10,0000	20,0000	25,0000	30,0000						
1000	- 0,0540	9,8721	19,8072	24,7769	29,7474						
2000	- 0,1246	9,7335	19,6080	24,5492	29,4919	40					
5000	- 0,4253	9,2594	18,9758	23,8412	28,7091						
10000	- 1,1629	8,3121	17,8266	22,5922	27,3599						

3.7. Vitesse du son (sound velocity)

La vitesse de propagation *C* d'un ébranlement dans un fluide est donnée par la loi de Laplace :

$$C = \sqrt{\frac{1}{\rho \cdot \kappa_{\$}}}$$

 $\kappa_{\$}$ est le coefficient de compressibilité isentropique du fluide, lié au coefficient de compressibilité isotherme κ_{T} , au coefficient de dilatation thermique α_{V} , à la masse volumique ρ et à la capacité thermique C_{p} (cf. § 3.3).

La vitesse du son augmente avec la température de l'eau, avec la pression (profondeur), et dans une moindre mesure, avec la salinité.

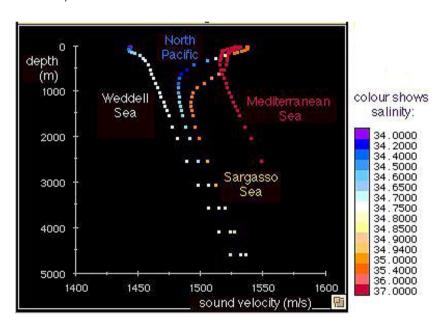


Fig. 4 – Profils verticaux de vitesses du son dans 4 régions différentes.

Diagramme : http://geosun.sjsu.edu

Comme le montre la fig. 4, dans les mers polaires (par ex. la Mer de Weddell), où les eaux sont très homogènes l'effet de la pression est prépondérant : la vitesse du son augmente avec la profondeur. En revanche, aux basses et aux moyennes latitudes, la vitesse du son est élevée dans les eaux chaudes de surface et dans les eaux profondes, soumises aux fortes pressions. Les vitesses minimales se situent dans les couches intermédiaires entre 800 -1200 m. La Méditerranée s'écarte de ce schéma, car, en dessous de la thermocline saisonnière, la colonne d'eau est assez homogène, plus chaude (13°C) et plus salée (38,5) que les eaux intermédiaires et profondes océaniques.

La couche où se situe le minimum de vitesse du son est parfois appelée canal SOFAR (Sound Fixing And Ranging channel). Lorsqu'un son est émis à ce niveau, l'onde sonore se trouve réfractée à l'approche des régions de plus hautes vitesses, tantôt vers le haut, tantôt vers le bas. Le son, ainsi canalisé dans la zone du minimum de vitesse peut se propager sur de longues distances. Voila pourquoi le chant des baleines peut être écouté à plusieurs centaines, voire plusieurs milliers de kilomètres de distance. Au cours années 1950, en pleine guerre froide, la défense américaine a commencé à mettre en place, un réseau mondial d'hydrophones (sound surveillance system ou SOSUS) destiné à détecter à longue distance les bruits provenant des sous-marins soviétiques.

L'acquisition de données bathymétriques précises par sondage acoustique nécessite la prise en compte des variations de vitesse de propagation du son à la verticale. D'où la nécessité de connaître au préalable, ou de mesurer en parallèle, la structure hydrologique de la colonne d'eau.

Trois algorithmes permettent d'obtenir la vitesse du son à partir de S, t et p. Celui de Wilson (1960), celui de Del Grosso & Mader (1972) et celui de Chen & Millero (1977). C'est ce dernier qui est choisi dans la publication UNESCO (1983). Des valeurs figurent dans le tableau 6.

Tab. 6 – Vitesse du son dans l'eau pure et dans les eaux de mer de différentes salinités, températures et pressions (m s⁻¹)

1	umerentes	saimiles, lei	mperatures	et pression	is (ms)	
р		Tempéra	ature °C (I	PTS 68)		S
dbar	0°	10°	20°	25°	30°	3
0	1402.4	1447.3	1482.3	1496.7	1509.1	
1000	1418.0	1463.4	1498.9	1513.5	1526.1	
2000	1434.3	1479.8	1515.6	1530.2	1543.0	0
5000	1485.8	1530.5	1565.9	1580.6	1593.5	
10000	1577.4	1617.4	1650.0	1663.8	1676.2	
0	1442.5	1483.7	1515.9	1529.0	1540.4	
1000	1458.8	1500.2	1532.5	1545.8	1557.3	
2000	1475.4	1516.8	1549.2	1562.5	1574.1	30
5000	1527.2	1567.4	1599.1	1612.3	1624.0	
10000	1616.8	1653.3	1682.1	1694.3	1705.4	
0	1449.1	1489.8	1521.5	1534.4	1545.6	
1000	1465.5	1506.3	1538.1	1551.1	1562.4	
2000	1482.3	1523.0	1554.7	1567.8	1579.2	35
5000	1534.0	1573.4	1604.5	1617.5	1629.0	
10000	1623.2	1659.0	1687.2	1699.2	1710.1	
0	1455.8	1495.9	1527.1	1539.8	1550.8	
1000	1472.3	1512.5	1543.7	1556.5	1567.6	
2000	1489.1	1529.1	1560.3	1573.1	1584.3	40
5000	1540.7	1579.4	1609.8	1622.6	1633.9	
10000	1629.3	1664.6	1692.2	1704.0	1714.6	

Les dauphins émettent des ultrasons par l'intermédiaire de trois paires de sacs aériens, disposés de part et d'autre du conduit nasal. Ces sons sont réfléchis par la parabole frontale crânienne située en arrière des sacs et concentrés en un faisceau au travers de l'amas graisseux du melon (la bosse de la tête). Le dauphin est capable de moduler la fréquence des sons (basse fréquence pour une détection lointaine mais peu précise, haute fréquence pour une détection précise à courte distance). En nageant, il secoue la tête pour obtenir, par balayage, des informations de plus en plus précises sur la forme de la cible.

4. Propriétés de la colonne d'eau

Dans ce paragraphe, nous énumérons quelques propriétés faisant partie de la procédure classique des dépouillements hydrologiques, mais qui ne sont pas des fonctions d'état. En effet elles ne se rapportent pas à une parcelle d'eau homogène, caractérisée par des valeurs p, t et S uniques, mais à une succession de parcelles composant la structure verticale des colonnes d'eau.

4.1. Correspondance entre pression et profondeur

Dérivée de la méthode de Saunders & Fofonoff (1976), l'UNESCO (1983) publie une formule permettant la conversion précise pressions - profondeurs. La formule se base sur la loi de l'hydrostatique et sur l'équation d'état de l'eau de mer. Elle tient compte des variations de l'accélération de la pesanteur g avec la latitude et la profondeur.

La loi de l'hydrostatique $dp = \rho \cdot g \cdot dz$ s'intègre sous la forme

$$\int_{0}^{z} g \cdot dz = \int_{0}^{p} \frac{1}{\rho} dp \equiv \int_{0}^{p} \alpha \cdot dp$$

 α est le volume massique.

L'accélération de la pesanteur est représentée par une relation $g = g^{\circ}_{\phi} + \gamma \cdot z$, où g°_{ϕ} est la valeur de la gravité en surface à la latitude ϕ , et γ le gradient vertical moyen de g.

$$\left(g_{\phi}^{o} + \frac{1}{2}\gamma \cdot z\right)z = \int_{0}^{p} \alpha dp$$

 $\gamma \cdot z$ étant un simple terme correctif, il est remplacé par $\gamma' \cdot p$

$$z = \int_{0}^{p} \alpha dp / \left(g_{\phi}^{o} + \frac{1}{2} \gamma' \cdot p \right)$$

On prend : $\gamma' = +2,184 \times 10^{-6} \text{ m.s}^{-2}.\text{dbar}^{-1}$

 $g^{\circ}_{\ \phi}$, est calculé en fonction de la latitude par la relation :

$$g_{\phi}^{o} = 9,780318 \cdot (1 + 5,2788 \cdot 10^{-3} \sin^2 \phi + 2,36 \cdot 10^{-5} \sin^4 \phi)$$

Si l'on dispose de données S, t et p, à différentes profondeurs, on peut calculer, à partir de EOS 80 les volumes massiques moyens $\overline{\alpha}$ correspondant aux différents intervalles Δp échantillonnés, et calculer l'intégrale numérique

$$z = \sum_{\Delta p, p=0}^{p=p} \overline{\alpha} \cdot dp / \left(g_{\phi}^{o} + \frac{1}{2} \gamma' \cdot p \right)$$

z correspond à la profondeur à laquelle se situe l'isobare p. Le résultat dépend des caractéristiques hydrologiques de la colonne d'eau (voir tableau 7).

Tab. 7 – Correspondance entre pressions (dbar) et profondeurs (m) dans un océan homogène (t = 0°C, S = 35) et à différentes latitudes

<i>p</i> dbar	0	L 30	atitude (deg 45	rés) 60	90
500	496.65	496.00	495.34	494.69	494.03
1000 2000	992.12 1979.55	990.81 1976.94	989.50 1974.33	988.19 1971.72	986.88 1969.11
3000	2962.43	2958.52	2954.61	2950.71	2946.81
4000 5000	3940.88 4915.04	3935.68 4908.56	3930.49 4902.08	3925.30 4895.60	3920.10 4889.13
6000	5885.03	5877.27	5869.51	5861.76	5854.01
7000 8000	6850.95 7812.93	6841.92 7802.63	6832.89 7792.33	6823.86 7782.04	6814.84 7771.76
9000	8771.07	8759.51	8747.95	8736.40	8724.85
1000	9725.47	9712.65	9699.84	9687.03	9674.23

4.2. Géopotentiel Φ (geopotential). Anomalie géopotentielle D (geopotential anomaly)

Selon la théorie dite du courant géostrophique la vitesse et la direction des courants marins sont reliées à la pente des isobares au sein de l'océan. Si l'on dispose de données S, t et p à la verticale et en plusieurs stations d'une zone maritime, on peut calculer, à chaque station, l'immersion à laquelle se situe telle isobare p et évaluer sa pente. Mais plutôt que de calculer son immersion z, on préfère calculer son géopotentiel $\Phi = z \times g$. En prenant un g constant, l'intégration de la loi de l'hydrostatique (§ 4.1) s'écrit :

$$\Phi = z \times g = \int_{0}^{p} \alpha \cdot dp$$
, soit en pratique $\cong \sum_{\Delta p, p=0}^{p=p} \overline{\alpha} \times \Delta p$

Pour améliorer la précision des calculs, on utilise aussi l'anomalie géopotentielle D. C'est la différence entre le géopotentiel d'une isobare dans l'océan observé et le géopotentiel de l'isobare dans l'océan normal (S=35 et $t=0^{\circ}$ C). δ étant l'anomalie de volume massique (cf. § 2.3).

$$D = \int_{0}^{p} \alpha_{(S,t,p)} dp - \int_{0}^{p} \alpha_{(35,0,p)} = \int_{0}^{p} \delta dp \cong \sum_{\Delta p,p=0}^{p=p} \overline{\delta} \times \Delta p$$

 Φ et D s'expriment en m² s⁻² (\equiv joule kg⁻¹).

4.3. Stabilité verticale et flottabilité (buoyancy)

Soit une parcelle d'eau de température t et de salinité S située à la profondeur z. Déplaçons la parcelle d'eau vers le bas d'une profondeur dz. Appelons dp_{parcelle} la variation

de masse volumique subie par la parcelle au cours de ce déplacement et d ρ la variation de masse volumique de l'eau environnante entre les profondeurs z et z+dz. Si la colonne d'eau au voisinage de la profondeur z est stable, la parcelle, dans sa nouvelle position, se trouvera plus légère que l'eau environnante ($\rho_{\text{parcelle}} < \rho$) et tendra à revenir à sa position initiale. La stabilité est évaluée par le terme E (en m⁻¹) :

PROPRIÉTÉS PHYSIQUES DE L'EAU DE MER

$$E = \frac{1}{\rho} \frac{d\rho - d\rho_{parcelle}}{dz}$$

On démontre que

$$E = \alpha_V \left[\rho \cdot g \left(\frac{\partial t}{\partial p} \right)_{\$} - \frac{\partial t}{\partial z} \right] + \beta \frac{\partial S}{\partial z}$$

 $\partial t/\partial z \cong \Delta t/\Delta z$ et $\partial S/\partial z \cong \Delta S/\Delta z$ sont les gradients de température et de salinité observés à la profondeur z, ρ est masse volumique *in situ*,

 $(\partial t/\partial p)_{\$}$ est le taux de variation adiabatique (§ 3.5),

 $\alpha_{\it V}$ est le coefficients de dilatation thermique,

 β est le coefficients de contraction haline (cf. § 3.3).

E est positif si la stratification est stable et d'autant plus élevé que la stratification est forte.

En réalité une parcelle d'eau écartée de sa position d'équilibre ne se contenterait pas de revenir à sa position d'équilibre mais oscillerait de part et d'autre. C'est pourquoi, on caractérise souvent la stabilité des eaux par leur flottabilité N, telle que :

$$N = \sqrt{g E}$$

N est une pulsation (= $2\pi \times$ fréquence). Elle est souvent, et improprement, appelée fréquence de Brunt-Väisälä.

5. COEFFICIENTS D'ÉCHANGES MOLÉCULAIRES

Les molécules d'eau et les espèces en solution sont en état d'agitation permanente. A l'échelle microscopique, des échanges de mouvement, de chaleur ou de matière interviennent entre les différents points de la solution mais si celle-ci est homogène, elle le demeure car ces échanges se compensent statistiquement. En revanche, si des différences de vitesse d'écoulement, de température ou concentration existent entre deux points, un transfert net de la propriété concernée intervient dans le sens opposé au gradient. Les coefficients qui caractérisent l'intensité de ces échanges (équilibrés ou non) sont des fonctions d'état. Pour l'eau de mer, leurs valeurs dépendent fortement de la température, mais très peu de la salinité et de la pression.

5.1. Viscosité

La viscosité est un concept qui paraît simple et clair, à première vue, mais qui devient fort complexe lorsqu'on va au fond des choses. Il intervient notamment dans la force avec laquelle les couches plus rapides entraînent les couches plus lentes d'un fluide en écoulement laminaire.

Viscosité dynamique η (dynamic viscosity)

Soit τ la force de frottement, par unité de surface, s'exerçant tangentiellement à une surface (τ est appelé contrainte tangentielle, en anglais *shear stress*; τ a les dimensions d'une pression). On peut écrire :

$$\tau = -\eta \frac{\partial V}{\partial z}$$

 $\partial V/\partial z$ est le gradient de vitesse d'écoulement selon un axe normal à la surface. Le coefficient η , ou viscosité dynamique, doit être exprimé en Pa s (\equiv kg m⁻¹ s⁻¹). On le trouve encore exprimé en poise, unité cgs correspondant à 1 g cm⁻¹ s⁻¹.

TAB. 8 – Viscosité dynamique η (en centipoise*) d'eaux de différentes salinités et températures, à la pression normale, d'après Millero (1974)

t, °C	С	Salinité										
		0	5	10	15	20	25	30	35			
0		1.791	1.804	1.817	1.831	1.844	1.857	1.870	1.884			
5		1.519	1.531	1.543	1.555	1.567	1.579	1.592	1.604			
10)	1.307	1.318	1.329	1.341	1.352	1.363	1.374	1.385			
15	;	1.138	1.149	1.160	1.170	1.180	1.190	1.201	1.211			
20)	1.002	1.012	1.022	1.032	1.041	1.051	1.061	1.070			
25	;	0.890	0.900	0.909	0.918	0.927	0.936	0.946	0.955			
30)	0.797	0.807	0.816	0.824	0.833	0.841	0.850	0.858			
35	;	0.719	0.729	0.737	0.745	0.753	0.761	0.769	0.777			

^{*1} centipoise = 10^{-2} g cm⁻¹ s⁻¹ = 10^{-3} kg m⁻¹ s⁻¹.

La viscosité des gaz peut être exprimée en fonction des grandeurs moléculaires (vitesse quadratique moyenne et libre parcours moyen), en considérant les phénomènes de transport de quantité de mouvement par les molécules. La viscosité des liquides, notamment celle de l'eau, est beaucoup plus difficile à expliquer, car elle est liée à leur structure. Tandis que la viscosité des gaz croît avec la température, celle de l'eau décroît rapidement lorsque la température augmente (Tab. 8). En effet, l'accroissement de l'agitation moléculaire rompt les liaisons hydrogènes que les molécules d'eau établissent entre elles, à l'état liquide. En revanche, la viscosité dépend très peu de la salinité.

L'effet de la pression est faible et néanmoins surprenant : entre 0 et 6000 dbar, la viscosité des eaux douces et marines diminue. D'après Horne & Johnson (1966), la diminution serait d'environ 4,5 % pour des eaux à - 2°C et de 2 % pour des eaux à 4°C. La théorie des clusters (grappes) de Frank et Wen rend compte de ce comportement en apparence paradoxal. Sous l'effet de la compression un certain nombre de liaisons hydrogènes rassemblant les molécules en grappes seraient rompues, ce qui donnerait en même temps une plus grande compacité et une plus grande fluidité à l'eau.

Viscosité cinématique *v* (*kinematic viscosity*)

Soit $\partial(\rho V)/\partial t$ est la variation temporelle de la quantité de mouvement ρV contenue dans une tranche de fluide d'épaisseur dz et de volume unité, dont les faces supérieures

et inférieures sont soumises aux contraintes τ_n et τ_{n+dn} , on peut écrire :

$$\frac{\partial(\rho V)}{\partial t} = \tau_z - \tau_{z+dz} = \frac{\partial}{\partial z} \left(\eta \frac{\partial V}{\partial z} \right)$$

Si on admet que ρ et η sont constants, on a :

$$\frac{\partial V}{\partial t} = \frac{\eta}{\rho} \frac{\partial^2 V}{\partial z^2}$$

Le coefficient $v = \eta/\rho$ est appelé viscosité cinématique Les valeurs de v sont de l'ordre de 1 à 2×10^{-6} m² s⁻¹, soit de 1 à 2×10^{-2} cm s⁻¹.

5.2. Conductivité thermique (thermal conductivity)

La propagation de la chaleur est facile à analyser dans le cas des solides. Si q est la quantité de chaleur traversant par unité de temps une unité de surface, on écrit :

$$q = -k \frac{\partial T}{\partial n}$$

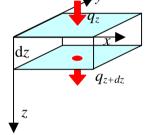
où $\partial T/\partial n$ est le gradient thermique suivant une direction normale à la surface. La conductivité thermique k s'exprime en watt m^{-1} K^{-1} . La même formule s'applique aux fluides, à condition qu'il n'y ait aucun transport de matière entre des régions à températures différentes, c'est à dire aucun effet de convection, ce qui exige des précautions extrêmes. La conductivité ainsi définie est dite *moléculaire*, par opposition à la conductivité thermique *turbulente*. Des valeurs de k, d'après Caldwell (1974), sont données dans le tableau 9.

TAB. 9 – Conductivité thermique (en watt m⁻¹ K⁻¹) d'une eau de salinité 31,5, en fonction de la température et de la pression

t (°C)			Pression	(dbar)								
	0	2000	4000	6000	8000	10000						
0	0,5653	0,5724	0,5799	0,5870	0,5941	0,6012						
5	0,5736	0,5807	0,5883	0,5958	0,6029	0,6100						
10	0,5816	0,5891	0,5966	0,6038	0,6113	0,6184						
15	0,5891	0,5971	0,6042	0,6117	0,6192	0,6263						
20	0,5966	0,6042	0,6117	0,6192	0,6268	0,6339						
25	0,6038	0,6117	0,6192	0,6268	0,6339	0,6414						
30	0,6109	0,6184	0,6259	0,6335	0,6410	0,6485						

La formule suivante permet d'obtenir les valeurs de k, en watt ${\rm m}^{\text{-1}}$ ${\rm K}^{\text{-1}}$, en fonction de t, en °C , de S et de p (en dbar) avec une précision de 0,5 % :

$$k = 0,5711 (1 + 3 \times 10^{-3} t - 10,25 \times 10^{-6} t^{2} + 6,53 \times 10^{-6} p - 0,29 \times 10^{-3} S)$$


On peut aussi définir un coefficient de diffusion thermique (*thermal diffusivity*) dont les dimensions sont, comme pour la viscosité cinématique, en $\ell^2 t^{-1}$. Soit $\partial Q/\partial t$ la variation temporelle du contenu thermique Q d'une tranche de fluide d'épaisseur dz et de volume unité, dont les faces supérieures et inférieures sont traversées par un

flux de chaleur
$$q_n$$
 et q_{n+dn} on a :

$$\frac{\partial Q}{\partial t} = q_n - q_{n+dn} = \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right)$$

En posant $dQ = \rho C_p dT$ et en admettant que ρ , C_p et k sont constants

$$\frac{\partial T}{\partial t} = \frac{k}{\rho C_p} \frac{\partial^2 T}{\partial n^2} \equiv K \frac{\partial^2 T}{\partial n^2}$$

 $K = k / \rho$ C_p est appelé coefficient de diffusion thermique (*thermal diffusivity*). Les valeurs de K sont de l'ordre de 1,5 \times 10⁻⁷ m² s⁻¹, soit de 1,5 \times 10⁻³ cm s⁻¹.

5.3. Coefficient de diffusion D (diffusivity)

Toujours en l'absence de phénomènes de convection, on définit un coefficient de diffusion moléculaire par la relation suivante, dite loi de Fick :

$$q = -D\frac{\partial C}{\partial z}$$

où q est la quantité (mol ou kg) de substance en solution traversant par unité de temps une unité de surface, et $\partial C/\partial z$ le gradient de concentration volumique (C en mol m⁻³ ou en kg m⁻³) suivant la normale à cette surface. D est en m² s⁻¹.

La valeur des coefficients de diffusion est mesurée expérimentalement sur des liquides au repos, en utilisant, par exemple des marqueurs isotopiques. On peut mesurer aussi bien le coefficient d'auto-diffusion de l'eau que celui des espèces en solution. Pour les ions (Tab. 10) et les petites molécules (Tab. 11), les valeurs vont de 1 à 2×10^{-5} cm² s⁻¹.

TAB. 10 – Coefficients de diffusion des ions de l'eau de mer à dilution infinie, en cm² s⁻¹ × 10⁵, d'après Ly & Gregory (1974)

, , ,									
Cations		t (°C)		Anions		t (°C)			
	0	18	25		0	18	25		
H⁺	5,61	8,17	9,31	OH ⁻	2,56	4,49	5,27		
Na⁺	0,627	1,13	1,33	Cl	1,01	1,71	2,03		
K⁺	0,986	1,67	1,96	Br⁻	1,05	1,76	2,01		
Mg ²⁺	0,356	0,594	0,705	SO ₄ ²⁻	0,500	0,890	1,07		
Ca ²⁺	0,376	0,673	0,793	HCO ₃		<u> </u>	1,18		
Sr ²⁺	0,372	0,670	0,794	CO ₃ ²⁻	0,439	0,780	0,955		

TAB. 11 – Coefficients de diffusion moléculaire des gaz atmosphériques dans l'eau pure, en cm² s⁻¹ × 10⁵, d'après Ferrell & Himmelblau (1967)

	- /	(/
Gaz dissous	<i>t</i> = 10 °C	<i>t</i> = 25 °C
N_2	1,29	2,01
O_2	1,54	2,20
CO_2	_	1,92

Soit:

A partir de la loi de Fick, on peut aussi définir un coefficient de diffusion de la salinité en considérant la variation temporelle $\partial(\rho S)/\partial t$ du contenu en sel d'une tranche d'eau d'épaisseur dz et de volume unité, dont les faces supérieurs et inférieures sont traversées par un flux de sel q_n et q_{n+dn} . Sachant qu'il faut identifier C à $\rho \times S$, car la salinité est rapportée à l'unité de masse on a :

$$\frac{\partial(\rho S)}{\partial t} = q_z - q_{z+dz} = \frac{\partial}{\partial z} \left(D \frac{\partial C}{\partial z} \right) = \frac{\partial}{\partial z} \left(D \frac{\partial(\rho S)}{\partial z} \right)$$
$$\frac{\partial S}{\partial t} = D \frac{\partial^2 S}{\partial z^2}$$

La valeur de D est de l'ordre de 1 à 2×10^{-5} cm² s⁻¹.

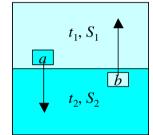
5.4. Du repos à la turbulence. Nombre de Reynolds

Dans les océans les mouvements sont essentiellement turbulents. Cet état de turbulence accroît énormément les échanges de quantité de mouvement, d'énergie et de matière et il convient de faire intervenir des coefficients de viscosité turbulente (*eddy vicosity*), de conductivité thermique et de diffusion turbulentes qui peuvent être de 10⁶ à 10¹⁰ fois plus élevés que les coefficients moléculaires correspondants.

Pour un canal très large et peu profond, le nombre de Reynolds est défini par :

$$R = \frac{V \cdot z \cdot \rho}{\eta}$$

où V est la vitesse d'écoulement, z la profondeur, ρ la masse volumique du fluide en circulation et η sa viscosité.


Reynolds a montré que l'écoulement reste laminaire tant que R reste inférieur à 2000 environ. Avec $\rho \approx 1\,000$ kg m⁻³,

et $\eta \approx 10^{-3}$ kg m⁻¹ s⁻¹, il apparaît que dans une mer qui n'aurait que 100 m de profondeur, le régime laminaire ne subsiste que pour une vitesse de courant inférieure à 7,2 cm à l'heure.

5.5. Double diffusion

Quand la stratification de l'océan est forte, les mélanges verticaux (ou plus exactement diapycnaux) se font par diffusion moléculaire. Comme le coefficient de diffusion de la température est environ 100 fois plus fort que celui du sel des instabilités dues à la double diffusion interviennent.

Soit une masses d'eau (t_1, S_1) , surmontant de manière stable une couche (t_2, S_2) avec $t_1 > t_2$ et $S_1 > S_2$. La structure est stable pourvu que $\rho(t_1, S_1, p) \leq \rho(t_2, S_2, p)$. Mais une parcelle d'eau a, en contact avec l'eau sous jacente perd de la chaleur

plus rapidement que du sel. Elle devient plus froide et plus lourde que l'eau qui l'entoure et plonge. Symétriquement une parcelle d'eau b capte de la chaleur plus rapidement que du sel et devient plus légère que l'eau qui l'entoure. Ce phénomène d'instabilité par double diffusion est appelé salt fingering. On l'observe notamment dans le courant d'eaux méditerranéennes qui s'écoule en Atlantique et qui est plus chaud et plus salé que l'eau atlantique qui l'entoure.

Lorsque l'on est en toujours en présence de 2 couches d'eau stables $\rho(t_1, S_1, p) \le \rho(t_2, S_2, p)$, mais avec $t_1 < t_2$ et $S_1 < S_2$, le phénomène prend une tournure différente. On l'appelle *layering*. Ce phénomène est observé notamment sous la banquise arctique.

6. AUTRES PROPRIÉTÉS PHYSIQUES

6.1. Pression osmotique π (osmotic pressure)

La pression osmotique est liée à l'abaissement de la température de congélation, à l'élévation de la température d'ébullition et à la diminution de la tension de vapeur saturante (§ 3.1). Soit un tube en U séparé dans sa partie inférieure par une membrane semi-perméable, c'est à dire perméable aux molécules de solvant mais non à celles de soluté. Si l'on verse dans l'une des branches du tube le solvant pur et dans l'autre la solution, le solvant diffuse à travers la membrane semi-perméable et dilue la solution jusqu'à ce que la différence de niveau entre les deux branches du tube atteigne une valeur maximale. La pression correspondant à cette dénivellation est la pression osmotique. Cet équilibre met en présence deux phases : la solution et le solvant pur. Il est donc bivariant. Il ne dépend que de la température et de la concentration du soluté.

La pression osmotique des eaux de mer, π peut être calculée avec précision par l'algorithme de Millero & Leung (1976) :

$$\pi = A S + B S^{3/2} + C S^2$$
 avec :
$$A = -2,331 \times 10^{-3} - 1,4799 \times 10^{-4} t$$

$$-7,520 \times 10^{-6} t^2 - 5,5185 \times 10^{-8} t^3$$

$$B = -1,1320 \times 10^{-5} - 8,7086 \times 10^{-6} t$$

$$+7,4936 \times 10^{-7} t^2 - 2,6327 \times 10^{-8} t^3$$

Des valeurs sont données dans le tableau 12.

	TAB. 12 – Pression osmotique π , en bars, d'eaux de différentes salinités et températures												
t, °C				Salinite	é								
	5	10	15	20	25	30	35						
0	3.34	6.62	9.91	13.23	16.60	20.03	23.54						
5	3.40	6.74	10.10	13.50	16.95	20.40	24.05						
10	3.46	6.87	10.29	13.76	17.28	20.88	24.54						
15	3.52	6.99	10.47	14.01	17.60	21.27	25.02						
20	3.58	7.10	10.65	14.25	17.91	21.64	25.46						
25	3.63	7.21	10.82	14.48	18.21	22.01	25.90						
30	3.69	7.32	10.98	14.70	18.49	22.35	26.31						

Si une cellule de plancton marin, était plongée brusquement dans de l'eau douce à 0°C, l'eau affluerait par osmose à l'intérieur de la cellule jusqu'à ce que la pression intracellulaire atteigne 23,54 bar (à peu près 24 atm). La cellule risquerait d'éclater bien avant que cette pression soit atteinte. Le phénomène ne se produira pas si la cellule est plongée dans une solution isotonique de NaCl (Tab. 13).

Tai différe	TAB. 13 – Équivalence osmotique entre des eaux de mers de différentes salinités et des solutions de NaCI*, en g.kg-soln ⁻¹ , ou ‰.										
Salinité	5	10	15	20	25	30	35	40			
NaCl	4,59	9,12	13,68	18,25	22,88	27,51	32,15	36,79			

^{*} Masse molaire de NaCl = 58,44

7.1. Indice de réfraction n (index of refraction)

L'indice de réfraction d'un milieu est le quotient de la valeur c de la vitesse de propagation des ondes électromagnétiques dans le vide par sa valeur V dans le milieu considéré :

$$n = \frac{C}{V}$$

Pour les eaux de mer, il dépend de S, t et p. Il dépend en outre de la longueur d'onde λ . Quelques valeurs calculées d'après l'algorithme de Millard & Seaver (1990) sont données dans le tableau 14. Avant d'opter pour la conductimétrie, il avait été, autrefois, envisagé de déduire la salinité des eaux de mer de mesures par réfractométrie. Mais les variations relatives de n en fonction de S sont si faibles (0,5 % pour S variant de 0 à 40) que la méthode aurait été trop imprécise. Les variations en fonction de t, λ , et dans une moindre mesure p, sont également faibles. Les spécialistes d'optique marine, qui étudient la pénétration de la lumière solaire dans les eaux de surface (c. à d. à p = 0) retiennent la valeur n = 1,340 pour l'ensemble des eaux marines et pour tout le domaine du spectre visible.

En observation sous-marine, la réfraction de la lumière forme un halo autour du soleil. photo : http://www.worldoceans.com

Tab. 14 – Indice de réfraction de l'eau pure et des eaux de mer de différentes salinités températures et pressions, à la longueur d'onde de 589,26 nm (raie D du sodium)

р		Salinité					
dbar	0°	10°	25°	Camillo			
0	1,3339	1,3337	1,3325				
4000	1,3402	1,3396	1,3381	0			
10000	1,3486	1,3475	1,3457				
0	1,3399	1,3393	1,3379				
4000	1,3460	1,3452	1,3434	30			
10000	1,3541	1,3530	1,3510				
0	1,3409	1,3403	1,3388				
4000	1,3469	1,3461	1,3443	35			
10000	1,3551	1,3539	1,3518				
0	1,3418	1,3412	1,3397				
4000	1,3479	1,3470	1,3452	40			
10000	1,3560	1,3548	1,3527				

6.3. Tension superficielle τ (surface tension)

L'attraction entre molécules produit la cohésion des liquides. A la surface d'un liquide, chaque molécule n'est pas attirée également dans toutes les directions, ce qui provoque une attraction résultante vers l'intérieur. Lorsque les liquides occupent un petit volume, ou lorsqu'ils sont en apesanteur, ils adoptent une forme sphérique.

On peut définir la tension superficielle τ comme étant l'énergie w nécessaire pour accroître la surface s d'un liquide, rapportée à une surface élémentaire ds, soit :

$$\tau = \frac{\mathrm{d}w}{\mathrm{d}s}$$

 τ a les dimensions d'une force par unité de longueur et s'exprime en N m⁻¹.

Une augmentation de la pression de l'air surmontant le liquide a pour effet d'augmenter le nombre de molécules de gaz par unité de surface en contact avec le liquide, ce qui compense partiellement l'attraction des molécules de liquide vers l'intérieur. La diminution de tension superficielle serait de l'ordre de 50 % pour une pression de 150 atm.

L'échauffement d'un liquide augmente l'agitation moléculaire et diminue les forces de cohésions du liquide. La tension superficielle décroît avec la température jusqu'à s'annuler au point critique du liquide.

La tension superficielle intervient dans la théorie de la propagation de la houle capillaire (les rides), ainsi que dans l'étude physico-chimique de la couche superficielle. Différents insectes aquatiques mettent à profit la tension superficielle pour marcher à la surface de l'eau. Le plus commun est la punaise d'eau ou gerris. *Halobates* (fam. *Gerridae*) est le seul genre d'insectes qui soit marin, avec 5 espèces pélagiques (*ocean-skaters*) distribuées tout autour du globe entre 40°N et S. Ces insectes n'ont pas d'ailes et ne plongent pas. Ils sont donc limités à l'interface mer/air et au film superficiel. Emportés par les vents et les courants, ils se nourrissent de petites proies de surface qu'ils sucent (ce sont des "punaises"), pondent leurs oeufs sur tout ce qui flotte et servent de proies aux oiseaux. Ils sont très sensibles aux pollutions huileuses.

Sur la photo ci-dessus, provenant de http://www.biosurvey.ou.edu la déformation de la surface de l'eau autour des pattes de l'insecte est bien visible, mais il s'agit de Gerris remigis, une espèce d'eau douce.

L'effet des variations de pression atmosphérique sur la tension superficielle des eaux est absolument négligeable. En revanche, l'effet de la température est appréciable. La valeur de la tension superficielle de l'eau pure est de 75,6 \times 10⁻³ N m⁻¹ à 0°C et de 72,0 \times 10⁻³ N m⁻¹ à 25°C (Tab. 18). La dissolution de composés électrolytiques augmente la tension superficielle de l'eau.

Selon Fleming & Revelle (1939) l'effet simultané de la température t et de la salinité S pourrait être représenté par la relation :

$$\tau$$
 (mN m⁻¹) = 75,64 – 0,144 t + 0,0221 S

Selon Houdart (1973), la courbe de variation de τ en fonction de la salinité n'est pas linéaire pour des salinités entre 0 et 20, et propose, pour des salinités comprises entre 20 et 40 une relation légèrement différente :

$$\tau$$
 (mN m⁻¹) = 75,82 – 0,148 t + 0,025 S

Ces différences sont minimes et sans importance, car la tension superficielle des eaux de mer de mer naturelles est très sensible à la présence de matières organiques, et les publications plus récentes s'attachent à évaluer cet effet. Mais il s'agit de cas d'espèces.

Les composés organiques complètement solubles augmentent légèrement (c'est le cas des sucres, des acides aminés) ou diminuent légèrement (c'est le cas des alcools et des acides gras) la tension superficielle de l'eau. Mais l'effet le plus prononcé est dû aux substances tensioactives (surfactants) qui ont la propriété de venir se rassembler à l'interface et diminuent fortement la tension superficielle.

C'est le cas des polluants, tels que les détergents et les hydrocarbures, mais de nombreuses substances naturelles issues du métabolisme planctonique (hydrocarbures, acides gras, stérols etc.) sont présentes dans des conditions tout à fait normale à la surface de la mer. Ainsi une eau de mer du large, non polluées, pourrait avoir une tension superficielle inférieure d'environ $0.5 \times N \ m^{-1}$ à celle d'une eau de mer sans matière organique. L'abaissement serait plus fort dans les zones de *slick*.

Le terme anglais *slick* peut trouver un équivalent français dans le mot moire. Il désigne les traînées d'aspect luisant, lisses et grises, entre des espaces de mer ridés et bleus, qui se produisent surtout par vent faible ou nul, du fait de la présence de matières organiques à la surface de la mer. Ce phénomène est lié à l'atténuation des ondes capillaires (un abaissement de la tension superficielle de 10⁻³ N m⁻¹ augmente de près de 30 % le coefficient d'atténuation des rides).

TAB. 18. – Tension superficielle τ (N m⁻¹×10³) de l'eau pure et d'eaux de mer de différentes salinités et températures

		,								
	Salinité	Température, °C								
		0°	5°	10°	15°	20°	25°	30°	35°	
	0	75.64	74.92	74.20	73.48	72.76	72.04	71.32	70.60	
	10	75.86	75.14	74.42	73.70	72.98	72.26	71.54	70.82	
	20	76.08	75.36	74.64	73.92	73.20	72.48	71.76	71.04	
	30	76.30	75.58	74.86	74.14	73.42	72.70	71.98	71.26	
	35	76.41	75.80	74.97	74.36	73.53	72.92	72.09	71.48	
	40	76.52	76.03	75.08	74.95	73.64	73.15	72.20	71.71	

RÉFÉRENCES BIBLIOGRAPHIQUES

ASME. 1967 ASME Steam Tables. *American Society of Mechanical Engineers*. Programme de calcul en ligne http://www.connel.com/

CALDWELL D. R. (1974). The thermal conductivity of sea water. *Deep-Sea Res.*, 21, 131-138.

CHEN C. T. & MILLERO F.J. (1977). Speed of sound in seawater at high pressures. *J. Acoust. Soc. of Amer.*, 60, (6): 1270-1273.

DEL GROSSO V. A. & MADER C.W. (1972). Speed of sound in seawater samples. *J. Acoust. Soc. of Amer.*, 52: 951-974.

FEISTEL R. (2003). A new extended Gibbs thermodynamic potential of seawater. *Progress in Oceanography*, 58: 43-114.

FLEMING R. H. & REVELLE R.R. (1939). Physical Processes in the Ocean. *in* Recent marine sediments, P.D. Trask, ed., p 48, *Am. Assoc. Petroleum Geologists*, Tulsa.

FERRELL R. T. & HIMMELBLAU D.M. (1967). Diffusion coefficients of nitrogen, oxygen and carbon dioxide in water. *J. Chem. Eng. Data*, 12, 111.

HOUDART M. (1973). Contribution à l'étude de quelques propriétés physiques de la surface des océans : tension superficielle, évaporation. Thèse de doctorat 3^{ème} cycle, 67 p, Université de Paris VI (1973).

HORNE R. A. & JOHNSON D. S. (1966). The viscosity of compressed seawater, *J. Geophys. Res.*, 71: 5275-527.

LI Y. H. & GREGORY S. (1974). Diffusion of ions in sea water and in deep-sea sediments. *Geochim. Cosmochim. Acta*, 88: 703-714.

MILLARD R. C. & SEAVER G. (1990) An index of refraction algorithm for seawater over temperature, pressure, salinity, density and wavelength. *Deep-Sea Res.* 37 (12 A): 1909-1926.

MILLERO F. J. (1974. Sea water as a multicomponent electrolyte solution. *in* The Sea, E.D. Goldberg ed., 5 : 3-80, Willey, New York.

MILLERO F. J. & LEUNG W.H. (1976) The thermodynamics of seawater at one atmosphere. *Amer. J. Sci.*, 276: 1035-1077.

SAUNDERS P. M. & FOFONOFF N. P. (1976). Practical conversion of Pressure to Depth. *J. Phys. Oceanogr.*, 11: 573-574.

UNESCO (1981). Tenth report of the joint panel on oceanographic tables and standards. *UNESCO technical papers in Marine Sciences*, 36, 36 p.

UNESCO (1983). Algorithms for computation of fundamental properties of seawater. UNESCO technical papers in Marine Sciences, 44, 53 p.

UNESCO (1985). The international system of Units (SI) in Oceanography. *UNESCO technical papers in Marine Sciences*, 45, 124 p.

WEISS R. F. & PRICE B. A. (1980). Nitrous oxide solubility in water and seawater. *Marine Chemistry*, 8:347-359.

WILSON W. D. (1960). Speed of sound in sea water as a function of temperature, pressure and salinity. *J. Acoust. Soc. Am.*, 32, 641-645.