Devoir surveillé 02

2TSI. Mathématiques

Durée 4 heures. Les calculatrices sont interdites.

L'exercice et le problème sont indépendants et peuvent être traités dans n'importe quel ordre.

On utilisera Python pour établir les fonctions.

On définit la suite (u_n) par :

$$\left\{ \begin{array}{l} u_0 = 9 \\ \forall \, n \in \mathbf{N}, \qquad u_{n+1} = 4u_n^3 + 3u_n^4. \end{array} \right. .$$

- 1. Écrire une fonction U telle que U(n) renvoie u_n . On fera une version récursive et une version itérative.
- 2. Écrire une fonction S telle que S(n) renvoie $\sum_{k=0}^{n} u_k$. On fera une version itérative et une version avec la fonction prédéfinie sum.

3. Écrire une fonction C telle que C(n) renvoie le nombre de 9 par lesquels se termine l'écriture en base 10 de u_n . Indication : l'idée est qu'un nombre v qui se termine par 9 est tel que v%10 vaille 9. Donc on initialise le nombre i de 9 dans U(n) à 0 et on fait une boucle while dans laquelle on rajoute 1 à i à chaque étape.

PROBLEME

n et p étant deux entiers naturels non nuls, on désigne par $\mathcal{M}_{n,p}(\mathbb{K})$ l'ensemble des matrices à n lignes et p colonnes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}). Pour A appartenant à $\mathcal{M}_{n,p}(\mathbb{K})$, on note A^T la transposée de la matrice A. On rappelle que $A^T \in \mathcal{M}_{p,n}(\mathbb{K})$ et que par rapport à A, les lignes de A deviennent les colonnes de A^T , dans le sens croissant d'indexation.

Par ailleurs, la transposition est une application linéaire et si $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{p,q}(\mathbb{K})$ alors

$$(AB)^T = B^T A^T.$$

L'ensemble des matrices carrées d'ordre n à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) est noté $\mathcal{M}_n(\mathbb{K})$. Pour $A \in \mathcal{M}_n(\mathbb{K})$, on note Tr(A) sa trace. Une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est dite antisymétrique si $A^T = -A$. On note $\mathcal{A}_n(\mathbb{K})$ l'ensemble des matrices antisymétriques d'ordre n à coefficients dans \mathbb{K} . Enfin, si A est carrée et inversible, $(A^T)^{-1} = (A^{-1})^T$.

Partie I

On considère dans cette partie uniquement la matrice

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

- 1. Calculer A^2 . En déduire que $A^2 + I$ n'est pas inversible.
- 2. Montrer que les valeurs propres complexes de A sont 0, i et -i.
- 3. La matrice A est-elle diagonalisable dans \mathbb{R} ? dans \mathbb{C} ?
- 4. On pose $P=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$. Montrer que P est inversible et calculer P^{-1} .

5. Calculer PAP^{-1} et en déduire que A est semblable à la matrice B définie par :

$$B = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

6. Calculer pour tout $p \in \mathbb{N}$, B^{2p} et B^{2p+1} . En posant D = Diag(1, 1, 0), en déduire A^{2p} et A^{2p+1} en fonction de D.

Partie II

Étude de $\mathcal{A}_3(\mathbb{R})$.

- 1. Montrer que, pour tout $n \in \mathbb{N}^*$, $\mathcal{A}_n(\mathbb{R})$ est un espace vectoriel sur \mathbb{R} .
- 2. Montrer que tout matrice de $\mathcal{A}_3(\mathbb{R})$ est de la forme $A = \begin{pmatrix} 0 & -\gamma & \beta \\ \gamma & 0 & -\alpha \\ -\beta & \alpha & 0 \end{pmatrix}$ avec $\alpha, \beta, \gamma \in \mathbb{R}$.
- 3. En déduire une base de $\mathcal{A}_3(\mathbb{R})$ et dim $\mathcal{A}_3(\mathbb{R})$.
- 4. Montrer que, $\forall A \in \mathcal{A}_3(\mathbb{R}), \det A = 0.$
- 5. Montrer que, $\forall A \in \mathcal{A}_3(\mathbb{R})$, il existe un unique vecteur $w \in \mathbb{R}^3$ tel que A soit la matrice de l'application $v \mapsto w \wedge v$ dans la base canonique de \mathbb{R}^3 .

Partie III

On fixe dans cette partie un entier naturel n non nul et une matrice $A \in \mathcal{A}_n(\mathbb{R})$. On note I la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

- 1. Si X est une matrice-colonne de $\mathcal{M}_{n,1}(\mathbb{R})$, quelle est la forme de X^T ? Quel est le nombre de lignes et de colonnes de X^TBX , où $B \in \mathcal{M}_n(\mathbb{R})$?
- 2. Montrer que, pour toute matrice colonne $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et toute matrice carrée B d'ordre n, on a :

$$X^T B X = X^T B^T X.$$

En déduire que $X^T A X = 0$.

- 3. Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$. On note $x_1, ..., x_n$ ses coefficients. Calculer $X^T X$. Puis montrer que $X^T X = 0 \Rightarrow X = 0$.
- 4. Soit une matrice colonne X telle que (A+I)X=0. En calculant $X^T(A+I)X$ de deux manières différentes, montrer que X=0.
- 5. Montrer que Ker(A+I) est réduit au vecteur nul. En déduire que A+I est inversible.
- 6. Montrer que $B = (I A)(I + A)^{-1}$ vérifie $B^T B = I$. On dit que B est une matrice orthogonale.
- 7. Calculer (I+B)(I+A). En déduire que I+B est inversible et trouver son inverse.

Partie IV

On se fixe dans cette partie un entier naturel non nul n et une matrice $A \in \mathcal{A}_n(\mathbb{R})$ et on note f l'endomorphisme de \mathbb{R}^n canoniquement associé à A.

- 1. Soit X une matrice colonne de $\mathcal{M}_{n,1}(\mathbb{R})$ et Y = AX. On suppose que AY = 0. Montrer que $A^2X = 0$ puis que $Y^TY = 0$.
- 2. Montrer que si $\vec{y} \in \operatorname{Ker} f \cap \operatorname{Im} f$ alors y = 0. En déduire que :

$$\mathbb{R}^n = Imf \oplus Kerf$$
.

3. En déduire que A est semblable à une matrice bloc de la forme

$$B = \begin{pmatrix} C & 0 \\ 0 & 0 \end{pmatrix}$$

où C est une matrice carrée d'ordre inférieur ou égal à n. Pouvez vous justifier pourquoi C est inversible?