Devoir surveillé 03

2TSI. Mathématiques

Samedi 14 décembre 2019

Les exercices et le problème sont indépendants. Durée 4 heures

Exercice 01

On considère trois urnes : U_1 qui contient initialement 4 boules noires et 2 boules blanches, U_2 qui contient initialement 5 boules noires et 5 boules blanches, U_3 qui contient initialement 3 boules noires et 4 boules blanches. On commence par tirer une boule de U_1 , on note sa couleur on met cette boule dans U_2 puis on tire une boule de U_2 , on note sa couleur et on met cette boule dans U_3 . Enfin, on tire une boule de U_3 et on note sa couleur. Calculer la probabilité que les trois boules tirées soient de la même couleur.

Indication : on notera B_i (respectivement N_i) : « la boule tirée dans l'urne U_i est blanche (respectivement noire) » et U : « l'ensemble du tirage est unicolore ». On use de la formule des probabilités composées.

Exercice 02

Résoudre (on diagonalisera une certaine matrice) le système différentiel (Σ) :

$$\begin{cases} x_1'(t) = x_1(t) + x_2(t) + x_3(t) \\ x_2'(t) = x_1(t) + x_2(t) + x_3(t) \\ x_3'(t) = x_1(t) + x_2(t) + x_3(t) \end{cases}, \text{ avec la condition initiale } x_1(0) = 0, x_2(0) = 1, x_3(0) = -2.$$

Problème

Inspiré du Concours National Marocain, épreuve de Math I, filière TSI en 2017

On note \mathbf{R}_+ l'ensemble des nombres réels positifs et \mathbf{R}_+^* l'ensemble des nombres réels strictement positifs. Pour tout $t \in \mathbf{R}_+$, on considère la fonction ϕ_t définie sur \mathbf{R} de la manière suivante :

$$\forall x \in \mathbf{R}, \ \phi_t(x) = \frac{e^{-t}}{1 + x^2 t^2}.$$

De plus, on considère la fonction réelle f définie par : $f(x) = \int_0^{+\infty} \phi_t(x) dt$.

Partie A

- 1. Montrer pour tout $k \in \mathbb{N}^*$, $\int_0^{\pi} \left(\frac{t^2}{2\pi} t\right) \cos(kt) dt = \frac{1}{k^2}$.
- 2. Soit $x \in]0, \pi]$.
 - (a) Écrire la formule de Leonhard Euler appliquée à $\sin\left(\frac{nx}{2}\right)$ puis celle appliquée à $\sin\left(\frac{x}{2}\right)$. Montrer : $\forall n \in \mathbb{N}^*$, $e^{ix} \frac{1 e^{inx}}{1 e^{ix}} = \frac{\sin\left(\frac{nx}{2}\right)}{\sin\left(\frac{x}{2}\right)} e^{i\frac{(n+1)x}{2}}$.
 - (b) Exprimer $\sum_{k=1}^{n} e^{ikx}$ sous la forme d'un rapport sans le signe somme.

En déduire que pour tout
$$n \in \mathbb{N}^{\star}$$
, $\sum_{k=1}^{n} \cos(kx) = \frac{\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$.

3. Soit Ψ une fonction réelle de classe \mathcal{C}^1 sur $[0,\pi].$

Montrer, à l'aide d'une intégration par parties, que : $\lim_{m\to+\infty} \int_0^{\pi} \Psi(x) \sin(mx) dx = 0$.

4. Soit g définie sur $[0,\pi]$ par : $x \mapsto \begin{cases} \frac{\frac{x^2}{2\pi} - x}{2\sin\left(\frac{x}{2}\right)} & \text{si} \quad x \in]0,\pi] \\ -1 & \text{si} \quad x = 0 \end{cases}$.

Justifier que g est de classe C^1 sur $[0, \pi]$.

Écrire le développement limité au voisinage de 0 de $\sin(x/2)$ et de $\cos(x/2)$ à l'ordre 2.

Montrer enfin que g est continue sur $[0,\pi]$ puis de classe \mathcal{C}^1 sur $[0,\pi]$.

- 5. Montrer: $2\sin\left(\frac{nx}{2}\right)\cos\left(\frac{(n+1)x}{2}\right) = \sin\left(\frac{(2n+1)x}{2}\right) + \sin\left(\frac{-x}{2}\right)$.
- 6. Calculer $\int_0^{\pi} \left(\frac{t^2}{4\pi} \frac{t}{2} \right) dt$.
- 7. Montrer: $\forall n \in \mathbb{N}^*, \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} + \int_0^{\pi} g(x) \sin\left(\frac{(2n+1)}{2}x\right) dx$.
- 8. Déterminer : $\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{1}{k^2}$.

Partie B

- 1. Montrer que le domaine de définition de f est R. Étudier la parité de f.
- 2. On désire étudier la continuité de f.
 - (a) Montrer que, pour tout $t \in \mathbf{R}_+$, ϕ_t est dérivable (par rapport à x) sur \mathbf{R}_+ et que pour tout $t \in \mathbf{R}_+$, pour tout $x \in \mathbf{R}_+$, $|\phi_t'(x)| \leq te^{-t}$.
 - (b) Justifier : $\exists c \in]x, x + h[, \phi_t(x+h) \phi_t(x) = h\phi_t'(c).$ En déduire : $\forall (t,x) \in (\mathbf{R}_+)^2, \ \forall h \in \mathbf{R}^* \ \text{avec} \ x + h \geqslant 0, \ \left| \frac{e^{-t}}{1 + (x+h)^2 t^2} - \frac{e^{-t}}{1 + x^2 t^2} \right| \leqslant |h| t e^{-t}.$
 - (c) En déduire que f est continue sur ${\bf R}$.
- 3. Déterminer la monotonie de f sur ${\bf R}$.
- 4. Montrer que, pour tout réel strictement positif x, $f(x) = \frac{1}{x} \int_0^{+\infty} \frac{e^{-\frac{u}{x}}}{1+u^2} du$. Déterminer $\lim_{x \to +\infty} f(x)$.
- 5. On étudie la nature de l'intégrale généralisée : $\int_0^{+\infty} f(x) dx$.
 - (a) Montrer que : $\forall x \in \mathbf{R}_+^{\star}, \ e^{-\frac{1}{\sqrt{x}}} \arctan(\sqrt{x}) \leqslant \int_0^{\sqrt{x}} \frac{e^{-\frac{u}{x}}}{1+u^2} du \leqslant \arctan(\sqrt{x}).$
 - (b) En déduire $\lim_{x \to +\infty} \int_0^{\sqrt{x}} \frac{e^{-\frac{u}{x}}}{1+u^2} du$.
 - (c) Montrer que : $\forall x \in \mathbf{R}_+^{\star}, \ 0 \leqslant \int_{\sqrt{x}}^{+\infty} \frac{e^{-\frac{u}{x}}}{1+u^2} du \leqslant \frac{\pi}{2} \arctan(\sqrt{x}).$
 - (d) En déduire $\lim_{x\to +\infty} \int_0^{+\infty} \frac{e^{-\frac{u}{x}}}{1+u^2} du$.
 - (e) Donner un équivalent simple de f au voisinage de $+\infty$.
 - (f) En déduire que $\int_0^{+\infty} f(x) dx$ est divergente.

Partie C

- 1. Soit $n \in \mathbf{N}$, on pose : $S_n = \sum_{k=0}^n f(k)$.
 - (a) Montrer que, pour tout $n \in \mathbf{N}^*$, $\int_0^n f(t) dt \leqslant \sum_{k=0}^n f(k) \leqslant 1 + \int_0^n f(t) dt$.
 - (b) En déduire que $\sum_{n>0} f(n)$ est une série divergente.
 - (c) En déduire que S_n est équivalente à $\int_0^n f(t) dt$.
- 2. On pose, pour tout $n \in \mathbf{N}^*$, $v_n = \int_0^{+\infty} \phi_1(n^2 x) dx$. Montrer que la série $\sum_{n \geq 1} v_n$ est convergente et calculer sa valeur.