Devoir surveillé 04

2TSI. Mathématiques

Samedi 08 février 2020

Les exercices sont indépendants. Durée 4 heures

Exercice 01

Soient $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal à 2 et $\mathcal{B}_0 = (1, X, X^2)$ la base canonique de E.

On considère l'endomorphisme f de E dont la matrice dans \mathcal{B}_0 est :

$$A = \left(\begin{array}{ccc} a & -1 & -2 \\ -4 & b & 4 \\ 5 & -1 & -3 \end{array} \right),$$

où $(a,b) \in \mathbb{R}^2$. On note Id l'application identité de E.

- 1. (a) Montrer qu'il existe un unique couple $(a,b) \in \mathbb{R}^2$ tel que $P_1 = 1 + X + X^2$ soit un vecteur propre de f. Quelle est alors la valeur propre de f associée au vecteur propre P_1 ?
 - (b) On suppose que (a, b) = (4, 1). Vérifier que -1 est une valeur propre de f. Déterminer Ker (f + Id).

Pour la suite de l'exercice, **on pose** a = 4 **et** b = 1.

- 2. Montrer que f est diagonalisable et déterminer une base \mathcal{B}' de E formée de vecteurs propres de f.
- 3. On considère l'application ϕ définie sur $E \times E$ par :

$$\phi: E \times E \to \mathbb{R}, (p_0 + p_1 X + p_2 X^2, q_0 + q_1 X + q_2 X^2) \mapsto p_0 q_0 + p_1 q_1 + 2p_2 q_2.$$

Montrer que ϕ définit un produit scalaire sur E.

(a) Pour tout λ réel appartenant au spectre de f, on note E_{λ} le sous-espace propre associé à la valeur propre λ .

On sait que -1 est une valeur propre de f.

Montrer qu'il existe une valeur propre μ de f telle que E_{-1} et E_{μ} sont orthogonaux pour le produit scalaire ϕ . Déterminer μ .

- (b) La base \mathcal{B}' de la question **Q2** est-elle orthogonale pour le produit scalaire ϕ ?
- 5. Soit la famille de vecteurs $\mathcal{C} = (1 + X + X^2, 2X X^2, 1 + X^2)$.
 - (a) Montrer que \mathcal{C} forme une base de E.
 - (b) En utilisant une méthode similaire à l'algorithme de Gram-Schmidt, déterminer une famille de vecteurs (Q_1, Q_2, Q_3) , orthogonale pour le produit scalaire ϕ , vérifiant les conditions suivantes :

 - $\begin{array}{ll} \bullet & \mathrm{Vect}\,(Q_1) = \mathrm{Vect}\,(1 + X + X^2)\,, \\ \bullet & \mathrm{Vect}\,(Q_1,\,Q_2) = \mathrm{Vect}\,(1 + X + X^2,\,2X X^2)\,, \\ \bullet & (Q_1\,,Q_2,\,Q_3) \text{ est une base de } E. \end{array}$
 - (c) Déterminer les normes des vecteurs Q_1 , Q_2 et Q_3 pour le produit scalaire ϕ .

6. (a) Soit $P \in E$, on note (α, β, γ) les coordonnées de P dans la base (Q_1, Q_2, Q_3) déterminée précédemment.

Montrer que les réels α , β et γ peuvent être déterminés à l'aide des produits scalaires de P et des vecteurs Q_i .

- (b) Montrer que les sous-espaces $F = \text{Vect}(Q_1)$ et $G = \text{Vect}(Q_2, Q_3)$ sont supplémentaires dans F
- (c) Rappeler la définition de la projection vectorielle sur F parallèlement à G. Déterminer la matrice de cet endomorphisme dans la base canonique de E.

Exercice 02

On décide de simuler des tirages répétés avec remise à l'aide d'un programme informatique. Ce programme détermine aléatoirement un entier $n \in \mathbb{N}^*$, puis génère une liste de n valeurs, elles aussi choisies aléatoirement parmi les nombres 0 et 1. Les choix des n valeurs sont indépendants et à chaque étape de génération d'un élément de la liste, la probabilité d'obtenir 1 est égale à λ avec $\lambda \in]0,1[$.

On note:

- L_n l'événement : « on a généré une liste de n valeurs ».
- S_k l'événement : « la liste obtenue contient exactement k fois la valeur $1 \gg$.
- T_k l'événement : « la liste obtenue contient au moins k valeurs ».
 - 1. Soient $p \in]0,1[$ et $a \in \mathbb{R}_+^*$. On suppose que la probabilité d'obtenir la valeur n est égale à $a \times p^n$. Rappeler la valeur de la somme de la série numérique convergente $\sum_{n \in \mathbb{N}^+} P(X=n)$.

En déduire la valeur de a.

- 2. Déterminer la probabilité de l'événement T_k pour $k \in \mathbb{N}^*$.
- 3. (a) Justifier que la probabilité $P_{L_j}(S_k)$ (probabilité de S_k sachant L_j)) pour $k \in \mathbb{N}^*$ et $j \in \mathbb{N}^*$ tel que $j \ge k$, vaut :

$$P_{L_j}(S_k) = {j \choose k} \lambda^k (1-\lambda)^{j-k}.$$

(b) En déduire que la probabilité d'obtenir exactement k fois la valeur 1 dans une liste générée contenant au moins k valeurs est égale à :

$$P(S_k \cap T_k) = \frac{a}{k!} (\lambda p)^k \sum_{j=k}^{+\infty} j(j-1)...(j-k+1)((1-\lambda)p)^{j-k}.$$

- 4. (a) Soit la fonction $f: x \mapsto \frac{1}{1-x}$, rappeler l'expression de son développement en série entière au voisinage de 0 et la valeur du rayon de convergence de la série obtenue.
 - (b) Démontrer par réccurence que pour tout $k \in \mathbb{N}^*$, pour tout $x \in \mathbb{R} \setminus \{1\}$,

$$f^{(k)}(x) = \frac{k!}{(1-x)^{k+1}}.$$

Énoncer le théorème de dérivation d'une série entière sur son intervalle de convergence. Calculer $P(S_k \cap T_k)$ en fonction de $f^{(k)}((1-\lambda)p)$ et en déduire la probabilité de l'événement S_k sachant T_k .