TELECOLLE JACQUET Corentin

Enoncé

Exercice 01

Soient (u_n) , (v_n) et (v_n) définies par $u_0 = -2$, $v_0 = 1$, $w_0 = 5$ et :

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 4u_n - 3v_n - 3w_n \\ v_{n+1} = 3u_n - 2v_n - 3w_n \\ w_{n+1} = 3u_n - 3v_n - 2w_n \end{cases}.$$

Déterminer u_n, v_n et w_n en fonction de n.

Indications:

On commence par remarquer que si l'on pose $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$ et $A = \begin{pmatrix} 4 & -3 & -3 \\ 3 & -2 & -3 \\ 3 & -3 & -2 \end{pmatrix}$ alors

$$X_{n+1} = AX_n$$
.

Il reste à calculer le polynôme caractéristique $\chi_A(t)$ (on trouve une valeur propre double qui est 1) puis on cherche P la matrice de passage de la base canonique à la base de vecteurs propres puis si D est la matrice diagonale trouvée, en posant $Y_n = P^{-1}X_n$, on a :

$$X_{n+1} = AX_n \Leftrightarrow PY_{n+1} = PDP^{-1}X_n \Leftrightarrow PY_{n+1} = PDY_n \Leftrightarrow Y_{n+1} = DY_n.$$

On pose alors par exemple $Y_n = \begin{pmatrix} u'_n \\ v'_n \\ w'_n \end{pmatrix}$. On peut calculer d'abord Y_0 en utilisant $X_0 = PY_0$ avec

$$X_0=\left(\begin{array}{c} -2\\1\\5\end{array}\right)$$
 puis on trouve Y_n en fonction de $Y_0.$ Et enfin $X_n=PY_n.$

Exercice 02

Soient Ma et Mb deux machines produisant respectivement 100 et 200 objets. La machine Ma (respectivement Mb) produit 5 (respectivement 6) d'objets défectueux. Étant donné un objet défectueux, quelle est la probabilité qu'il ait été fabriqué par la machine Ma?

Indications:

Si D est l'événement « l'objet est défectueux » et M_a (resp. M_b) « l'objet est fabriqué par M_a (resp. M_b) », on calculera donc $P_D(M_a)$. On connait déjà $P(M_a)$, $P(M_b)$, $P_{M_a}(D)$ et $P_{M_b}(D)$.

Correction

Exercice 01

Exercice 02