Colles du 1/12 en Sciences Physiques
Publication le 28/11 à 11h31
Equations de Maxwell
- Forme locale des équations de Maxwell
- Forme intégrale (on retrouve le théorème de Gauss, la conservation du flux magnétique, le théorème d'Ampère est généralisé)
- Equation de d'Alembert (simple établissement à ce stade, pas de solution donnée)
- Equation de Poisson et de Laplace pour le potentiel électrostatique
Energie du champ électromagnétique
- Grandeurs énergétiques : densité volumique d'énergie électromagnétique, puissance cédée à la matière, vecteur de Poynting
- Bilans énergétique : relation locale de Poynting, bilans en régime stationnaire sur un conducteur ohmique, un condensateur ou une bobine
- Loi d'Ohm locale
Ondes EM dans le vide
- Solution de l'équation de d'Alembert (OPP, OPPM)
- Grandeurs énergétiques (cas d'une OPP, cas particulier d'une OPPM avec les grandeurs complexes)
- Polarisation (Définition d'une polarisation rectiligne, circulaire, loi de Malus)
Exemples de questions de cours (à titre indicatif)
- Equations de Maxwell (énoncé, forme locale et intégrale, sens physique)
- Conservation de la charge (énoncé, établissement dans le cas unidimensionnel, généralisation)
- Bilan d'énergie électromagnétique (densité locale d'énergie électromagnétique, vecteur de Poynting, puissance cédée à la matière, équation locale de Poynting)
- OPP dans le vide (solution des équations de Maxwell, structure de l'OPP, vitesse de phase)
- OPPM : grandeurs énergétiques associées (grandeurs complexes, densité volumique moyenne, vecteur de Poynting moyen)
- Polarisation rectiligne (définition, état de la lumière naturelle, Loi de Malus)
