Le programmes de colles de cette semaine n'est pas encore défini.
Le programmes de colles de cette semaine n'est pas encore défini.
bonjour, voici le prog de la semaine 19 du 10 au 14/03/25: chap 7 : ondes e.m dans les milieux :dispersion-absorption : * onde em dans un plasma neutre sans collision : description, conductivité complexe du plasma, interprétation énergétique : non absorption *propagation d’une onde em dans un milieu neutre possédant une conductivité complexe : structure de l’onde (pseudo onde plane progressive ), relation de dispersion : dispersion, absorption, indice complexe applications : *plasma (pulsation plasma , 2 cas de figure : ondes progressives ou ondes évanescentes *conducteurs ohmiques : conductivité réelle : effet de peau, analogie avec la diffusion, calcul de B et aspect énergétique *Propagation d’un paquet d’ondes dans un milieu peu dispersif et non absorbant : cas du « paquet » de 2 ondes : onde moyenne , onde enveloppe :introduction de vg cas du paquet gaussien d’ondes ( calcul exact pour « profil rectangulaire » (*****) aspect énergétique : vg = ve, relation courante entre vitesse de phase et vg, illustration sur le plasma ( cas des ondes progressives) * réflexion et réfraction d'une onde incidente sur un dioptre plan entre 2 milieux d’indice complexe n1 et n2 : coeff de réflexion et de transmission en amplitude (en incidence normale) pour E et B adaptation d'impédance: couche anti reflet coeff de réflexion et de transmission en puissance applications : interface vide/ plasma ou interface VIDE/ conducteur TP COURS POLARISATION polarisation: PR, PE, PC gauche ou droit. Lumière naturelle non polarisée polarisation par réflexion (incidence de Brewster), dichroisme (polaroid, loi de Malus), lames à retard (demi-onde, quart d'onde) ATTENTION étude du rayonnement dipolaire et diffusion Rayleigh HP : donc polarisation par diffusion Rayleigh non traitée chap8 : optique géométrique REVISIONS SUP : TOUT ! en plus , cours sur les aberrations géométriques et chromatiques attention seuls lentilles et miroir plan au prog miroirs sphériques , prisme non traité les relations de conjugaison doivent être connues ( normalement….) chap 9: interférences : poser uniquement question de cours avec source ponctuelle monochomatique I) *vibration scalaire, surface d'onde = équiphase = équichemin optique, th de malus onde sphérique, onde plane temps de réponse d'un détecteur différents types de source intensité = éclairement , on parle intensité dans le prog, notation complexe *superposition d’ondes lumineuses : formule de Fresnel confrontation avec expérience : NOTION de trains d’onde, nécessité de partir d’une seule source et de diviser l’onde ex de diviseurs d'onde ( avec S ponctuelle monochromatique: interférences non localisées ) pour l’instant juste le principe , je ne détaille pas les calculs *par front d'onde: trous d’YOUNG ATTENTION miroirs de Lloyd (***), Fresnel (***), biprisme (***), bilentilles BILLET(****), trous d'Young , bilentilles de Meslin (*****) NON TRAITES * par division d'amplitude : LAME d’air *amélioration du critère de cohérence : delta inférieur à Lc qui s’identifie à la longueur moyenne des trains d’ondes, ordres de grandeur de Lc *généralités sur figure d’interférences :franges lumineuses, ordre d’interférence, contraste, forme géométrique : hyperboloides avec s ponctuelle (interf non localisées) qui donnent sur E des branches d’hyperboles (assimilables sous certaines conditions à des franges rectilignes) ou circulaires selon les cas *notations complexes : on retrouve la formule de Fresnel Ce qui suit n’a pas été traité : ne rien poser *représentation de Fresnel pour 2 ondes puis N ondes : sélectivité des interférences à N ondes II) exemple de dispositif par division du front d’onde : trous d’Young 1) S et M à grande distance finie des bi-trous : * calcul de delta et p(x) par D.L * Franges rectilignes , interfrange * comparaison des 2 figures : bi-trous et bi-fentes *introduction d’une lame de verre : translation des franges *déplacement de la source : translation des franges ou pas ( fente fine source) 2) S et M à grande distance infinie des bi-trous : montage de Fraunhofer * calcul de delta et p(x) : plans équiphases th de Malus PRIL * Franges rectilignes , interfrange *cas de N TROUS ou fentes : calcul de la fonction réseau (*****) , graphe interprétation avec la représentation de fresnel , formule fondamentale des réseaux : applications aux réseaux . (*****) NORMALEMENT HP