Physique
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Rappels sur la convergence de l’intégrale d’une suite de fonctions. Convergence dominée à paramètre continu. Exemple de \(\smash{\lim\limits_{x\to +\infty}\int_0^1 \frac{1}{t^2+1}\,e^{-(t^2+1)\,x^2}\,\text{d}t}\).
Remarque sur le fait de vérifier l’hypothèse de domination sur suffisamment d’intervalles.
Exemple de \(x\mapsto\smash{\int_0^1 \frac{1}{t^2+1}\,e^{-(t^2+1)\,x^2}\,\text{d}t}\); valeur de l’intégrale de Gauss, \(\Gamma(\tfrac12)=\sqrt{\pi}\). Remarque sur le fait de vérifier l’hypothèse de domination sur suffisamment d’intervalles.
Exemple des fonctions \(\smash{x\mapsto \int_{-\pi}^{+\pi}e^{i(nt-x\sin t)}\,\text{d}t}\) à l’ordre \(2\), et \(\Gamma\) à l’ordre infini. Log-convexité de \(\Gamma\). Exemple de \(\smash{x\mapsto \int_{0}^{+\infty}\tfrac{1-\cos t}{t^2}\,e^{-xt}\,\text{d}t}\), valeur de l’intégrale de Dirichlet.
Intérêt : pour justifier qu’une partie est ouverte ou fermée.
La semaine suivante : calcul différentiel et optimisation.
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :