Chimie 1er semestre
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Primitive, ensemble des primitives d'une fonction sur un intervalle. Linéarité, règles de calcul. Primitives usuelles. Le cas particulier de la primitive de $ x \mapsto f(ax+b) $ est traité.
Théorème fondamental de l'analyse (admis). Calcul d'une intégrale à l'aide de primitives. Exemples. Relation de Chasles.
Intégration par parties, formule et exemples de contextes où on l'utilise.
Formule de changement de variables, exemples et cas particulier d'une fonction bijective.
Utilisation de linéarisation (via les formules d'Euler) ou passage par une exponentielle complexe pour obtenir une primitive.
Primitive de $ t \mapsto \frac{1}{at^2+bt+c}$ en fonction de la valeur du discriminant.
Calculer $\int_0^1 x^2 e^{2x} dx$ par intégrations par parties.
Calculer $\int_0^{\pi} \frac{\sin(x)}{1+\cos^2(x)} dx$ en posant $t = \cos(x)$.
Calculer $\int_0 ^1 \sqrt{1-x^2} dx$ en posant $x = \cos(t)$ (attention aux signes).
Déterminer une primitive de $t \to e^{2t} \cos(5t)$ sur $\mathbb{R}$ en utilisant des exponentielles complexes.
Matrices, égalité, addition et multiplication par un scalaire. Matrices $E_{i,j}$, utilisation dans la décomposition d'une matrice.
Produit matriciel, définitions et propriétés. Produit de matrices de type $E_{i,j}$.
Transposée : définition. Transposée de la somme, transposée du produit.
Matrice identité. Opérations élémentaires, matrices associées.
Système linéaire : vocabulaire, écriture matricielle, résolution par pivot de Gauss.
Matrices triangulaires, cas du produit. Matrices symétriques, antisymétriques. Inverse d'une matrice, formule du produit, de la transposée. Calcul de puissances, formule du binôme de Newton.
Calcul d'inverse par résolution de système ou par pivot de Gauss sur les matrices. Cas particulier des matrices triangulaires.
Calculer les puissances de $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$.
Démonstration de la formule du binôme de Newton pour les matrices.
Démonstration de la formule d'inverse de l'inverse, d'inverse du produit ou d'inverse de la transposée.
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :
