Programmes de colles

Semaine du lundi 24 novembre 2025

Chimie 1er semestre

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

Chimie PC 2ème sem

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

Chimie SI 2ème sem

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

SII

Mathématiques

Étude de suites

Vocabulaire usuel : suite majorée/minorée/bornée, suite croissante/décroissante/monotone/stationnaire. Modes de définition : de manière explicite, par récurrence, de manière implicite (aucune étude des suites implicites n'est prévue dans ce chapitre).

Limite finie ou infinie d'une suite : définition, unicité, toute suite convergente est bornée. Opérations usuelles sur les limites.

Une suite de limite strictement positive est strictement positive à partir d'un certain rang. Passage à la limite dans une inégalité sous condition de convergence. Théorème d'encadrement (des gendarmes) et ses corollaires. Théorème de comparaison.

Théorème de la limite monotone pour les suites. Suites adjacentes, définition et convergence. Approximations décimales d'un réel.

Suites extraites : convergence et limite des suites extraites d'une suite convergente. Cas des sous-suites paires et impaires qui convergent vers une même limite.

Suites à valeurs complexes : définition de suite, suite bornée, convergence. Adaptation des résultats obtenus dans le cas des suites réelles.

Suites arithmético-géométriques. Suites récurrentes linéaires d'ordre 2 (cas complexe et cas réel). Suites définies par $u_{n+1} = f(u_n)$: notion d'intervalle stable par $f$, étude de la monotonie de $f$, du signe de $x \mapsto f(x)-x$, théorème du point fixe.

À savoir faire en particulier :

Énoncer et démontrer le théorème de convergence des suites adjacentes.

Soit $u$ la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = -2u_n + 3$. Déterminer l'expression de $u_n$ en fonction de $n$.

Soit $u$ la suite définie par $u_0 = 0$, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$. Déterminer l'expression de $u_n$ en fonction de $n$.

Applications des nombres complexes

Notions rencontrées :

Racines d'un nombre complexe. Calcul depuis la forme exponentielle et depuis la forme algébrique. Résolution d'équations de degré 2 à coefficients complexes. Expressions de la somme et du produit des racines.

Racines $n$-ièmes de l'unité, définition, nombre, expression et tracé sur le cercle trigonométrique. Valeur de la somme des racines. Extension aux racines $n$-ièmes d'un complexe non nul.

Exponentielle d'un nombre complexe, définition. Le module vaut $e^{Re(z)}$ et un argument est $Im(z)$. Règles de calcul. La non-définition de logarithme sur les complexes a été évoquée et répétée.

Dérivation d'une fonction complexe d'une variable réelle. Cas particulier des compositions avec l'exponentielle.

Interprétation géométrique de $\frac{c-a}{b-a}$ (module et argument), lien avec les conditions pour avoir des points alignés, des droites orthogonales.

Cas particuliers d'applications de type $ z \mapsto az+b$: translations, rotations, homothéties.

À savoir faire en particulier :

Démonstration que si $z \in \mathbb{C}^*$, l'équation $t^2 = z$ d'inconnue $t$ admet exactement deux solutions opposées.

Déterminer les racines complexes de $3+4i$ en effectuant les calculs sous forme algébrique.

Déterminer les solutions complexes à l'équation $\exp(z)=1+i$.

Lettres

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

Espagnol

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :