Programmes de colles

Semaine du lundi 8 décembre 2025

Chimie 1er semestre

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

Chimie PC 2ème sem

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

Chimie SI 2ème sem

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

SII

Mathématiques

Calcul de primitives

Ce chapitre se centre sur les formules et compétences calculatoires. La définition de l'intégrale de Riemann ne sera vue qu'au second semestre.

Notions rencontrées :

Primitive, ensemble des primitives d'une fonction sur un intervalle. Linéarité, règles de calcul. Primitives usuelles. Le cas particulier de la primitive de $ x \mapsto f(ax+b) $ est traité.

Théorème fondamental de l'analyse (admis). Calcul d'une intégrale à l'aide de primitives. Exemples. Relation de Chasles.

Intégration par parties, formule et exemples de contextes où on l'utilise.

Formule de changement de variables, exemples et cas particulier d'une fonction bijective.

Utilisation de linéarisation (via les formules d'Euler) ou passage par une exponentielle complexe pour obtenir une primitive.

Primitive de $ t \mapsto \frac{1}{at^2+bt+c}$ en fonction de la valeur du discriminant.

À savoir faire en particulier :

Calculer $\int_0^1 x^2 e^{2x} dx$ par intégrations par parties.

Calculer $\int_0^{\pi} \frac{\sin(x)}{1+\cos^2(x)} dx$ en posant $t = \cos(x)$.

Calculer $\int_0 ^1 \sqrt{1-x^2} dx$ en posant $x = \cos(t)$ (attention aux signes).

Déterminer une primitive de $t \to e^{2t} \cos(5t)$ sur $\mathbb{R}$ en utilisant des exponentielles complexes.

Matrices et systèmes linéaires

Notions rencontrées :

Matrices, égalité, addition et multiplication par un scalaire. Matrices $E_{i,j}$, utilisation dans la décomposition d'une matrice.

Produit matriciel, définitions et propriétés. Produit de matrices de type $E_{i,j}$.

Transposée : définition. Transposée de la somme, transposée du produit.

Matrice identité. Opérations élémentaires, matrices associées.

Système linéaire : vocabulaire, écriture matricielle, résolution par pivot de Gauss.

Matrices triangulaires, cas du produit. Matrices symétriques, antisymétriques. Inverse d'une matrice, formule du produit, de la transposée. Calcul de puissances, formule du binôme de Newton.

Calcul d'inverse par résolution de système ou par pivot de Gauss sur les matrices. Cas particulier des matrices triangulaires.

À savoir faire en particulier :

Calculer les puissances de $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$.

Démonstration de la formule du binôme de Newton pour les matrices.

Démonstration de la formule d'inverse de l'inverse, d'inverse du produit ou d'inverse de la transposée.

Lettres

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici : 

Espagnol

Ce programme de colles n'est visible que pour les utilisateurs connectés.
C'est par ici :